
The Hobby package
Andrew Stacey

loopspace@mathforge.org

1.12 from 2023-09-01

1 Introduction
John Hobby’s algorithm, [1], produces a curve through a given set of points. The
curve is constructed as a list of cubic Bézier curves with endpoints at subsequent
points in the list. The parameters of the curves are chosen so that the joins are
“smooth”. The algorithm was devised as part of the MetaPost program.

TikZ/PGF has the ability to draw a curve through a given set of points but its
algorithm is somewhat simpler than Hobby’s and consequently does not produce as
aesthetically pleasing curve as Hobby’s algorithm does. This package implements
Hobby’s algorithm in TEX so that TikZ/PGF can make use of it and thus produce
nicer curves through a given set of points.

Hobby’s algorithm allows for considerable customisation in that it can take
into account various parameters. These are all allowed in this implementation.

There is also a “quick” version presented here. This is a modification of Hobby’s
algorithm with the feature that any point only influences a finite number (in fact,
two) of the previous segments (in Hobby’s algorithm the influence of a point dies
out exponentially but never completely). This is achieved by applying Hobby’s
algorithm to subpaths. The resulting path produced with this “quick” version is
not as ideal as that produced by Hobby’s full algorithm, but is still much better
than that produced by the plot[smooth] method in TikZ/PGF, as can be seen in
Figure 1. As this is intended as a simpler method, it does not (at present) admit
the same level of customisation as the full implementation. The “quick” algorithm
is described in full in Section 5.

The full algorithm is implemented in LATEX3 with no reference to TikZ or PGF.
It makes extensive use of the fp and prop libraries for the computation steps. The
TikZ library is simply a wrapper that takes the user’s input, converts it into the
right format for the LATEX3 code, and then calls that code to generate the path.
The “quick” version does not use LATEX3 and relies instead on the PGFMath library
for the computation.

Figure 1 is a comparison of the three methods. The red curve is drawn using
Hobby’s algorithm. The blue curve is drawn with the plot[smooth] method from
TikZ/PGF. The green curve uses the “quick” version. Figure 2 compares the
implementation with that given by MetaPost.

1

loopspace@mathforge.org


Figure 1: Comparison of the three algorithms

Figure 2: Hobby’s algorithm in TikZ overlaying the output of MetaPost

2



2 Usage
The package is provided in form of a TikZ library. It can be loaded with

\usetikzlibrary{hobby}

Warning: This package makes extensive use of LATEX3. On occasion, updates
to LATEX3 packages have resulted in this package behaving oddly or not working at
all. The most up to date version of this package can be obtained from my github
page (download hobby.dtx and run tex hobby.dtx to generate the files). Often,
such issues are reported on the TeX-SX site and workarounds quickly found so it
is worth checking there as well.

There are a variety of ways of specifying the data to the algorithm to generate
the curve.

2.1 As a to path.
The key curve through={<points>} installs a to path which draws a smooth
curve through the given points. The points should be specified as a list which
can be optionally separated by dots. The purpose of allowing the dots is to
make it simpler to switch between the to path method and the shortcut method
(described in Section 2.2). However, note that the two methods are not completely
synonymous due to how one can specify options so care must still be taken when
switching.

\begin{tikzpicture}[scale=.5]
\draw (0,0) to[curve through={(6,4) .. (4,9) .. (1,7)}] (3,5);

\end{tikzpicture}

\begin{tikzpicture}[scale=.5]
\draw (0,0) to[curve through={(6,4) (4,9) (1,7)}] (3,5);

\end{tikzpicture}

3

https://github.org/loopspace/hobby
https://github.org/loopspace/hobby
http://tex.stackexchange.com


There is a corresponding key quick curve through={<points>} which uses
the “quick” algorithm. Again, the dots are optional.

\begin{tikzpicture}[scale=.5]
\draw (0,0) to[quick curve through={(6,4) .. (4,9) .. (1,7)}]

(3,5);
\end{tikzpicture}

2.2 The shortcut Method
There is also the facility to subvert TikZ’s path processor and define curves simply
using the .. separator between points. Note that this relies on something a little
special in TikZ: the syntax (0,0) .. (2,3) is currently detected and processed
but there is no action assigned to that syntax. As a later version of TikZ may
assign some action to that syntax, this package makes its override optional via the
key use Hobby shortcut (which can be set globally if so desired).

\begin{tikzpicture}[scale=.5,use Hobby shortcut]
\draw (-3,0) -- (0,0) .. (6,4) .. (4,9) .. (1,7) .. (3,5) --

++(2,0);
\end{tikzpicture}

4



\begin{tikzpicture}[scale=.5,use quick Hobby shortcut]
\draw (-3,0) -- (0,0) .. (6,4) .. (4,9) .. (1,7) .. (3,5) --

++(2,0);
\end{tikzpicture}

2.3 The Plot Handler Method
The algorithms can also be used via the plot handler syntax. This library reg-
isters three plot handlers: hobby, closed hobby, and quick hobby. The first is
an open curve through the points using the full algorithm, the second is a closed
curve, and the third uses the quick algorithm (and is thus an open curve).

\tikz[smooth] \draw plot coordinates {(0,0) (1,1) (2,0) (3,1)
(2,1) (10:2cm)};

\tikz[hobby] \draw plot coordinates {(0,0) (1,1) (2,0) (3,1)
(2,1) (10:2cm)};

\tikz[closed hobby] \draw plot coordinates {(0,0) (1,1) (2,0)
(3,1) (2,1) (10:2cm)};

\tikz[quick hobby] \draw plot coordinates {(0,0) (1,1) (2,0)
(3,1) (2,1) (10:2cm)};

5



This has the side effect that these can be used with the pgfplots package.
However, the Hobby algorithm is designed to draw a curve in 2D-space and does
not take into account the fact that when plotting a graph then the two dimensions
are treated differently.

\begin{tikzpicture}
\begin{axis}

\addplot +[smooth] {rnd};
\addplot +[hobby] {rnd};

\end{axis}
\end{tikzpicture}

−6 −4 −2 0 2 4 6

0

0.2

0.4

0.6

0.8

1

2.4 Basic Level PGF Commands
(Suggested by the question How to combine Hobby paths with PGF Basic Layer
commands? on TeX-SX.)

6

http://tex.stackexchange.com/q/159896/86
http://tex.stackexchange.com/q/159896/86


In some circumstances, it is convenient to bypass TikZ and use more basic PGF
commands for building a path. It is possible to add a path built using Hobby’s
algorithm in this fashion. The commands are:

• \pgfpathhobby to initialise the path. If this is followed by a braced group
then the contents of that are taken as options to the algorithm.

• \pgfpathhobbypt{<pgf point specification>} to add a point to the
path. If this is followed by a braced group then the contents of that are
taken as options for that point.

• \pgfpathhobbyend finalises the path. This applies the algorithm to the set
of specified points and adds it to the current path.

\begin{tikzpicture}
\pgfpathmoveto{\pgfpoint{0}{0}}
\pgfpathlineto{\pgfpoint{1cm}{0}}
\pgfpathhobby{closed=true}
\pgfpathhobbypt{\pgfpoint{1cm}{2cm}}{tension in=2}
\pgfpathhobbypt{\pgfpoint{2cm}{1cm}}
\pgfpathhobbypt{\pgfpoint{3cm}{0cm}}
\pgfpathhobbyend
\pgfusepath{stroke}

\end{tikzpicture}

3 Customisation
There are various ways to customise the path generated by the Hobby algorithms.
The full algorithm has a variety of parameters which can be varied to produce
different paths through the same points. These vary from specifying that the path
be open or closed, to specifying “tensions” at each point to change how the path
approaches or leaves it.

3.1 Algorithm Customisations
The main algorithm (i.e., not the “quick” variant) can deal with open or closed
paths, it is possible to vary the “tensions” between the specified points of the
paths, and for an open path it is possible to specify the incoming and outgoing
angles either directly or via certain “curl” parameters. When using the to path
specification, the parameters can be specified before or after the curve through

7



key or as options to the coordinates. When using the shortcut specification, the
parameters can be given on the path or on coordinates.

On occasion, it is ambiguous which curve an option belongs to. This is most
likely if a coordinate happens to belong to two curves, or if a coordinate is parsed
before TikZ knows that it is constructing a curve using this library. The simplest
solution is to move the option to a place where there is no ambiguity. Other
solutions to this problem will be detailed later.

Let us start with the customisations to the algorithm.

• Basic curve.

\begin{tikzpicture}
\draw[postaction=show curve controls] (0,0) to[curve

through={(1,.5) .. (2,0) .. (3,.5)}] (4,0);
\draw[xshift=5cm,use Hobby shortcut,postaction=show curve

controls] (0,0) .. (1,.5) .. (2,0) .. (3,.5) .. (4,0);
\end{tikzpicture}

• The path can be open, as above, or closed.

\begin{tikzpicture}[scale=.5]
\draw[postaction=show curve controls] (0,0) to[closed,curve

through={(1,.5) .. (2,0) .. (3,.5)}] (4,0);
\draw[xshift=5cm,use Hobby shortcut,postaction=show curve

controls] ([closed]0,0) .. (1,.5) .. (2,0) .. (3,.5) ..
(4,0);

\end{tikzpicture}

• Specifying the angle at which the curve goes out and at which it comes in.
The angles given are absolute.

\begin{tikzpicture}
\draw[postaction=show curve controls] (0,0) to[out

angle=0,in angle=180,curve through={(1,.5) .. (2,0) ..
(3,.5)}] (4,0);

\draw[xshift=5cm,use Hobby shortcut,postaction=show curve
controls] ([out angle=0,in angle=180]0,0) .. (1,.5) ..
(2,0) .. (3,.5) .. (4,0);

\end{tikzpicture}

8



• Applying tension as the curve comes in to a point.

\begin{tikzpicture}
\draw[postaction=show curve controls] (0,0) to[curve

through={(1,.5) .. ([tension in=2]2,0) .. (3,.5)}] (4,0);
\draw[xshift=5cm,use Hobby shortcut,postaction=show curve

controls] (0,0) .. (1,.5) .. ([tension in=2]2,0) ..
(3,.5) .. (4,0);

\end{tikzpicture}

• Applying the same tension as a curve comes in and goes out of a point.

\begin{tikzpicture}
\draw[postaction=show curve controls] (0,0) to[curve

through={(1,.5) .. ([tension=2]2,0) .. (3,.5)}] (4,0);
\end{tikzpicture}

• Specifying the curl parameters.

\begin{tikzpicture}
\draw[postaction=show curve controls] (0,0) to[in

curl=.1,out curl=3,curve through={(1,.5) .. (2,0) ..
(3,.5)}] (4,0);

\draw[xshift=5cm,use Hobby shortcut,postaction=show curve
controls] (0,0) .. ([in curl=.1,out curl=3]1,.5) .. (2,0)
.. (3,.5) .. (4,0);

\end{tikzpicture}

3.2 Edge Cases
Angles are constrained to lie in the interval (−π, π]. This can introduce edge cases
as there is a point where we have to compare an angle with −π and if it is equal,
add 2π. This will occur if the path “doubles back” on itself as in the next example.
By nudging the repeated point slightly, the behaviour changes drastically.

9



\begin{tikzpicture}[use Hobby shortcut]
\draw (0,0) .. (1,0) .. (0,0) .. (0,-1);
\draw[xshift=2cm] (0,0) .. (1,0) .. (0,0.1) .. (0,-1);
\draw[xshift=4cm] (0,0) .. (1,0) .. (0,-0.1) .. (0,-1);

\end{tikzpicture}

Due to the precision of the computations, it is not possible to always get this
test correct. The simplest solution is to nudge the repeated point in one direction
or the other. Experimenting shows that the “nudge factor” can be extremely small
(note that it will be proportional to the distance between the specified points). It
is best to nudge it in the direction most normal to the line between the specified
points as the goal is to nudge the difference of the angles. An alternative solution
is to add an additional point for the curve to go through.

\begin{tikzpicture}[use Hobby shortcut]
\draw (0,0) .. (1,0) .. (0,0) .. (0,-1);
\draw[xshift=2cm] (0,0) .. (1,0) .. (0,0.002) .. (0,-1);
\draw[xshift=4cm] (0,0) .. (1,0) .. (0,-0.002) .. (0,-1);

\end{tikzpicture}

Lastly, it is possible to add an excess angle key to a coordinate. This will
add the corresponding multiple of 2π to the angle difference.

\begin{tikzpicture}[use Hobby shortcut]
\draw (0,0) .. (1,0) .. (0,0) .. (0,-1);
\draw[xshift=2cm] (0,0) .. ([excess angle=1]1,0) .. (0,0) ..

(0,-1);
\draw[xshift=4cm] (0,0) .. ([excess angle=-1]1,0) .. (0,0) ..

(0,-1);
\end{tikzpicture}

10



Although this is intended to be an integer, no check is done and so some quite
odd curves can result from changing this parameter.

3.3 Reusing Paths
Although the (full) algorithm has good theoretical computation time, using TEX
for its implementation does not provide for fast runs. The externalisation library
of TikZ/PGF can be used to save whole pictures, but it can be useful to save a
generated path within a single tikzpicture for later use within that same picture.
The implementation allows for this by separating the generation of the path from
its use.

\begin{tikzpicture}
\draw[line width=3mm,red,use Hobby shortcut,save Hobby

path={saved}] (0,0) .. (1,1) .. (2,0);
\draw[xshift=2cm,ultra thick,yellow] (0,0) [restore and use

Hobby path={saved}{}];
\end{tikzpicture}

Note that the key restore and use Hobby path is given after the initial
(0,0). This is because by default the path generated by the Hobby algorithm
does not start with an explicit moveto since that is the standard behaviour of
all of PGF’s path construction macros. So the (0,0) ensures that our path is
well-formed by issuing an initial moveto. An alternative would be to use the key
disjoint which does add an initial moveto.

\begin{tikzpicture}
\draw[line width=3mm,red,use Hobby shortcut,save Hobby

path={saved}] (0,0) .. (1,1) .. (2,0);
\draw[xshift=2cm,ultra thick,yellow,restore and use Hobby

path={saved}{disjoint}];
\end{tikzpicture}

An example of where this is useful is in drawing knot diagrams. When so
doing, it is sometimes convenient to draw a path (or segment of a path) twice in
order to get the under/over crossings correct. For this situation, it can be useful
to designate certain parts of the path as blank, whereby we mean to redraw them
later. The point of a blank segment of a curve is that it is still taken into account
when computing the algorithm but is left blank when it comes to rendering. A
path can then be redrawn with the blank/non-blank segments reversed. As it
might be desired to have only some blank segments drawn the second time, there
are two types of blank. Only a soft blank will be reversed in these circumstances.

11



\begin{tikzpicture}[use Hobby shortcut,line width=1mm,rotate=90]
\draw[blue,save Hobby path={left}] ([out angle=90,in

angle=-90]1,0) .. (1,1) .. ([blank=soft]0,2) .. (1,3) .. (1,4);
\draw[red] ([out angle=90,in angle=-90]0,0) .. (0,1) .. (1,2) ..

(0,3) .. (0,4);
\draw[blue,restore and use Hobby path={left}{disjoint,invert

soft blanks}];
\end{tikzpicture}

This can be taken a step further. The generated data can be saved to the
aux file and read back in, avoiding the need to regenerate it on each run. To
engage this facility, the Hobby path has to be named (via save Hobby path) and
the key Hobby externalise (or Hobby externalize) must be given in a context
that applies (such as on the path or on the surrounding scope).

The relevant keys are the following.

• use previous Hobby path[=<options>]. This (re)uses the previously gen-
erated Hobby path. As all the data is globally stored, this can technically
be in a different tikzpicture. The <options> will be applied, in so far as
they are options that can be applied after the algorithm has run.

• save Hobby path=<name>. Saves a path for later use. The path is saved in
a global macro so can be reused in another picture.

• restore Hobby path=<name>. This restores the named Hobby path (if it
exists). It does not use it. After this key, use previous Hobby path will
use the restored path.

• restore and use Hobby path={<name>}{<options>}. This restores the
named path and uses it with <options> applied.

• Hobby externalise or Hobby externalize. This puts in place the code
for saving the generated data to the aux file. On subsequent runs, it uses
the saved data rather than the current data. For a curve to make use of
this, it has to be named via the save Hobby path key. So to regenerate the
data, either delete the aux file, remove the save Hobby path key for one
compilation run, or issue the command \HobbyDisableAux which disables
writing paths to the aux file (note that the paths will be regenerated on the
run after the first run with this command issued).

The options that can be applied are those that affect the rendering of the
curve but not its generation. When the curve is rendered (or used, in the above
parlance), TEX steps along the coordinates of the generated curve and carries out
an action for each piece. This action can be modified after the curve has been
generated. The action will be one of:

• Move to the end point (ignoring the control points).

12



• Draw a Bezier curve to the end point through the control points.

• Draw a Bezier curve to the end point through the control points and then
move to the end point.

The last is subtle: the move doesn’t actually go anywhere but it “breaks” the
curve at the designated point. In particular, a later cycle would return to this
point (or a later break) rather than to the start of the curve.

These actions are triggered by the keys blank and break. Each should be
specified to the coordinate at the end of the segment under consideration. The
blank key can be given the argument soft. The effect of this is seen when the key
invert soft blanks is used. This swaps the drawing action so that non-blank
segments are skipped and soft blanks are drawn. Non-soft-blank segments are still
not drawn.

\begin{tikzpicture}[use Hobby shortcut]
\draw (0,0) .. (1,1) .. ([blank=soft]2,0) .. (3,1) ..

([blank]4,0) .. (5,1);
\draw[red,use previous Hobby path={invert soft blanks,disjoint}];

\end{tikzpicture}

As a more practical application, consider the following rendering of a trefoil
knot.

\begin{tikzpicture}[
use Hobby shortcut,
every path/.style={

line width=1mm,
white,
double=red,
double distance=.5mm

}
]

\draw ([closed]0,2) .. ([blank=soft]210:.5) .. (-30:2) ..
([blank=soft]0,.5) .. (210:2) .. ([blank=soft]-30:.5);

\draw[use previous Hobby path={invert soft blanks,disjoint}];
\end{tikzpicture}

13



This could easily be generalised using the \foreach command, as demonstrated
in the next code.

\begin{tikzpicture}[
use Hobby shortcut,
every path/.style={

line width=1mm,
white,
double=red,
double distance=.5mm

}
]
\def\nfoil{9}

\draw ([closed]0,2)
foreach \k in {1,...,\nfoil}{

.. ([blank=soft]90+360*\k/\nfoil-180/\nfoil:-.5) ..
(90+360*\k/\nfoil:2)
};

\draw[use previous Hobby path={invert soft blanks,disjoint}];
\end{tikzpicture}

3.4 Breaking the Path
One issue with the shortcut notation is that it is not possible (using this nota-
tion) to have two sets of curves following directly on from each other because
there is no clear demarcation of the boundary. To make this possible, there is a
key Hobby action, which installs an action to be taken after the point has been

14



processed. The general key Hobby action={code} can install arbitrary code.
Probably the more useful variant is Hobby finish which runs the algorithm on
the points gathered so far. An example of the use of this is to make it possible
to specify tangencies at certain points. Technically, once a tangent direction has
been specified, the Hobby algorithm splits the set of points there and works on
each piece separately. The following key implements this, the technicalities are
due to the fact that the tangent angle has to be used twice: once to specify the
angle of the path coming in to that point and once to specify the angle of the
path coming out. Note that specifying the tangent vector at every point means
that the algorithm is not actually being used. However, Hobby’s formulae for the
lengths of the control points is still being used.

\begin{tikzpicture}[
use Hobby shortcut,
tangent/.style={%

in angle={(180+#1)},
Hobby finish,
designated Hobby path=next,
out angle=#1,

},
]

\draw[help lines] (-5,-5) grid (5,5);
\draw (-5,0) -- (5,0) (0,-5) -- (0,5);
\draw[thick] (-5,2) .. ([tangent=0]-3,3) .. (-1,1) .. (0,-1.3)

.. ([tangent=0]1,-2) .. ([tangent=45]2,-1.5) ..
([tangent=0]3,-2) .. (5,-4);

\end{tikzpicture}

15



4 Implementing Hobby’s Algorithm
We start with a list of n+1 points, z0, . . . , zn. The base code assumes that these are
already stored in two arrays∗: the x–coordinates in \l_hobby_points_x_array
and the y–coordinates in \l_hobby_points_y_array. As our arrays are 0–indexed,
the actual number of points is one more than this. For a closed curve, we have
zn = z0

†. For closed curves it will be convenient to add an additional point at
z1: thus zn+1 = z1. This makes zn an internal point and makes the algorithms
for closed paths and open paths agree longer than they would otherwise. The
number of apparent points is stored as \l_hobby_npoints_int. Thus for an open
path, \l_hobby_npoints_int is n, whilst for a closed path, it is n+1‡. Following
Hobby, let us write n′ for n if the path is open and n+ 1 if closed. From this we
compute the distances and angles between successive points, storing these again
as arrays. These are \l_hobby_distances_array and \l_hobby_angles_array.
The term indexed by k is the distance (or angle) of the line between the kth point
and the k+1th point. For the internal nodes§, we store the difference in the angles
in \l_hobby_psi_array. The kth value on this is the angle subtended at the kth
node. This is thus indexed from 1 to n′ − 1. The bulk of the work consists in

∗Arrays are thinly disguised property lists.
†Note that there is a difference between a closed curve and an open curve whose endpoints

happen to overlap.
‡In fact, we allow for the case where the user specifies a closed path but with zn 6= z0. In

that case, we assume that the user meant to repeat z0. This adds another point to the list.
§Hobby calls the specified points knots.

16



setting up a linear system to compute the angles of the control points. At a node,
say zi, we have various pieces of information:

1. The angle of the incoming curve, φi, relative to the straight line from zi−1
to zi

2. The angle of the outgoing curve, θi, relative to the straight line from zi to
zi+1

3. The tension of the incoming curve, τ i
4. The tension of the outgoing curve, τi
5. The speed of the incoming curve, σi
6. The speed of the outgoing curve, ρi

The tensions are known at the start. The speeds are computed from the angles.
Thus the key thing to compute is the angles. This is done by imposing a “mock
curvature” condition. The formula for the mock curvature is:

k̂(θ, φ, τ, τ) = τ2
(

2(θ + φ)
τ

− 6θ
)

and the condition that the mock curvatures have to satisfy is that at each internal
node, the curvatures must match:

k̂(φi, θi−1, τ i, τi−1)/di−1 = k̂(θi, φi+1, τi, τ i+1)/di.

Substituting in yields:

τ2
i

di−1

(
2(φi + θi−1)

τi−1
− 6φi

)
= τ2

i

di

(
2(θi + φi+1)

τ i+1
− 6θi

)
.

Let us rearrange that to the following:

diτ i+1τ
2
i θi−1

+ diτ i+1τ
2
i (1 − 3τi−1)φi

− di−1τi−1τ
2
i (1 − 3τ i+1)θi
− di−1τi−1τ

2
i φi+1

= 0

For both open and closed paths this holds for i = 1 to i = n′ − 1. We also have
the condition that θi + φi = −ψi where ψi is the angle subtended at a node by
the lines to the adjacent nodes. This holds for the internal nodes¶. Therefore for
i = 1 to n′ − 1 the above simplifies to the following:

diτ i+1τ
2
i θi−1

+ (diτ i+1τ
2
i (3τi−1 − 1) + di−1τi−1τ

2
i (3τ i+1 − 1))θi
+ di−1τi−1τ

2
i θi+1

= −diτ i+1τ
2
i (3τi−1 − 1)ψi

− di−1τi−1τ
2
i ψi+1

¶Recall that by dint of repetition, all nodes are effectively internal for a closed path.

17



For an open path we have two more equations. One involves θ0. The other is the
above for i = n′ − 1 = n− 1 with additional information regarding ψn. It may be
that one or either of θ0 or φn is specified in advance. If so, we shall write the given
values with a bar: θ0 and φn. In that case, the first equation is simply setting θ0
to that value and the last equation involves substituting the value for φn into the
above. If not, they are given by formulae involving “curl” parameters χ0 and χn
and result in the equations:

θ0 = τ3
0 + χ0τ

3
1(3τ0 − 1)

τ3
0 (3τ1 − 1) + χ0τ

3
1
φ1

φn =
τ3
n + χnτ

3
n−1(3τn − 1)

τ3
n(3τn−1 − 1) + χnτ3

n−1
θn−1

Using φ1 = −ψ1 − θ1, the first rearranges to:
(τ3

0 (3τ1 − 1) + χ0τ
3
1)θ0 + (τ3

0 + χ0τ
3
1(3τ0 − 1))θ1 = −(τ3

0 + χ0τ
3
1(3τ0 − 1))ψ1.

The second should be substituted in to the general equation with i = n− 1. This
yields:

dn−1τnτ
2
n−1θn−2

+
(
dn−1τnτ

2
n−1(3τn−2 − 1) + dn−2τn−2τ

2
n−1(3τn − 1)

− dn−2τn−2τ
2
n−1

τ3
n + χnτ

3
n−1(3τn − 1)

τ3
n(3τn−1 − 1) + χnτ3

n−1

)
θn−1

= −dn−1τnτ
2
n−1(3τn−2 − 1)ψn−1

This gives n′ equations in n′ unknowns (θ0 to θn−1). The coefficient matrix is
tridiagonal. It is more natural to index the entries from 0. Let us write Ai for the
subdiagonal, Bi for the main diagonal, and Ci for the superdiagonal. Let us write
Di for the target vector. Then for an open path we have the following formulae:

Ai = diτ i+1τ
2
i

B0 =
{

1 if θ0 given
τ3

0 (3τ1 − 1) + χ0τ
3
1 otherwise

Bi = diτ i+1τ
2
i (3τi−1 − 1) + di−1τi−1τ

2
i (3τ i+1 − 1)

Bn−1 =


dn−1τnτ

2
n−1(3τn−2 − 1) + dn−2τn−2τ

2
n−1(3τn − 1) if φn given

dn−1τnτ
2
n−1(3τn−2 − 1) + dn−2τn−2τ

2
n−1(3τn − 1)

−dn−2τn−2τ
2
n−1

τ3
n+χnτ

3
n−1(3τn−1)

τ3
n(3τn−1−1)+χnτ3

n−1
) otherwise

C0 =
{

0 if θ0 given
τ3

0 + χ0τ
3
1(3τ0 − 1) otherwise

Ci = di−1τi−1τ
2
i

D0 =
{
θ0 if θ0 given
−(τ3

0 + χ0τ
3
1(3τ0 − 1))ψ1 otherwise

Di = −diτ i+1τ
2
i (3τi−1 − 1)ψi − di−1τi−1τ

2
i ψi+1

Dn−1 =
{

−dn−1τnτ
2
n−1(3τn−2 − 1)ψn−1 − dn−2τn−2τ

2
n−1φn if φn given

−dn−1τnτ
2
n−1(3τn−2 − 1)ψn−1 otherwise

18



For a closed path, we have n equations in n+ 2 unknowns (θ0 to θn+1). However,
we have not included all the information. Since we have repeated points, we need
to identify θ0 with θn and θ1 with θn+1. To get a system with n′ equations in n′

unknowns, we add the equation θ0 − θn = 0 and substitute in θn+1 = θ1. The
resulting matrix is not quite tridiagonal but has extra entries on the off-corners.
However, it can be written in the form M+uv> with M tridiagonal. There is some
freedom in choosing u and v. For simplest computation, we take u = e0 + en′−1.
This means that v = dn′−2τn′−2τ

2
n′−1e1 −en′−1. With the same notation as above,

the matrix M is given by the following formulae:

Ai = diτ i+1τ
2
i

B0 = 1
Bi = diτ i+1τ

2
i (3τi−1 − 1) + di−1τi−1τ

2
i (3τ i+1 − 1)

Bn′−1 = dn′−1τn′τ2
n′−1(3τn′−2 − 1) + dn′−2τn′−2τ

2
n′−1(3τn′ − 1) + 1

C0 = −dn′−2τn′−2τ
2
n′−1

Ci = di−1τi−1τ
2
i

D0 = 0
Di = −diτ i+1τ

2
i (3τi−1 − 1)ψi − di−1τi−1τ

2
i ψi+1

Dn′−1 = −dn′−1τn′τ2
n′−1(3τn′−2 − 1)ψn′−1 − dn′−2τn′−2τ

2
n′−1ψ1

The next step in the implementation is to compute these coefficients and store
them in appropriate arrays. Having done that, we need to solve the resulting
tridiagonal system. This is done by looping through the arrays doing the following
substitutions (starting at i = 1):

B′
i = B′

i−1Bi −AiC
′
i−1

C ′
i = B′

i−1Ci

D′
i = B′

i−1Di −AiD
′
i−1

followed by back-substitution:

θn−1 = D′
n−1/B

′
n−1

θi = (D′
i − C ′

iθi+1)/B′
i

For a closed path, we run this both with the vector D and the vector u = e0+en′−1.
Then to get the real answer, we use the Sherman–Morrison formula:

(M + uv>)−1D = M−1D − M−1uv>M−1D

1 + v>M−1u
.

This leaves us with the values for θi. We now substitute these into Hobby’s
formulae for the lengths:

ρi = 2 + αi
1 + (1 − c) cos θi + c cosφi+1

σi+1 = 2 − αi
1 + (1 − c) cosφi+1 + c cos θi

where αi = a(sin θi − b sinφi+1)(sinφi+1 − b sin θi)(cos θi − cosφi+1)

19



and a =
√

2, b = 1/16, and c = (3−
√

5)/2. These are actually the relative lengths
so need to be adjusted by a factor of di/3. Now θi is the angle relative to the
line from zi to zi+1, so to get the true angle we need to add back that angle.
Fortunately, we stored those angles at the start. So the control points are:

diρi(cos(θi + ωi), sin(θi + ωi))/3 + zi

−diσi+1(cos(ωi − φi+1), sin(ωi − φi+1))/3 + zi+1

5 A Piecewise Version of Hobby’s Algorithm
Here we present a variant of Hobby’s algorithm. One difficulty with Hobby’s
algorithm is that it works with the path as a whole. It is therefore not possible to
build up a path piecewise. We therefore modify it to correct for this. Obviously,
the resulting path will be less “ideal”, but will have the property that adding new
points will not affect earlier segments. The method we use is to employ Hobby’s
algorithm on two-segment subpaths. When applied to a two-segment subpath, the
algorithm provides two cubic Bezier curves: one from the kth point to the k+ 1st
point and the second from the k+1st to the k+2nd. Of this data, we keep the first
segment and use that for the path between the kth and k + 1st points. We also
remember the outgoing angle of the first segment and use that as the incoming
angle on the next computation (which will involve the k+1st, k+2nd, and k+3rd
points). The two ends are slightly different to the middle segments. On the first
segment, we might have no incoming angle. On the last segment, we render both
pieces. This means that for the initial segment, we have a 2 × 2 linear system:[

B0 C0
A1 B1

]
Θ =

[
D0
D1

]
This has solution:

Θ = 1
B0B1 − C0A1

[
B1 −C0

−A1 B0

] [
D0
D1

]
= 1
B0B1 − C0A1

[
B1D0 − C0D1
B0D1 −A1D0

]
Now we have the following values for the constants:

A1 = d1τ2τ
2
1

B0 = τ3
0 (3τ1 − 1) + χ0τ

3
1

B1 = d1τ2τ
2
1(3τ0 − 1) + d0τ0τ

2
1 (3τ2 − 1) − d0τ0τ

2
1
τ3

2 + χ2τ
3
1 (3τ2 − 1)

τ3
2(3τ1 − 1) + χ2τ3

1

C0 = τ3
0 + χ0τ

3
1(3τ0 − 1)

D0 = −(τ3
0 + χ0τ

3
1(3τ0 − 1))ψ1

D1 = −d1τ2τ
2
1(3τ0 − 1)ψ1

Let us, as we are aiming for simplicity, assume that the tensions and curls are
all 1. Then we have A1 = d1, B0 = 3, B1 = 2d1 + 2d0 − d0 = 2d1 + d0, C0 = 3,
D0 = −3ψ1, D1 = −2d1ψ1. Thus the linear system is:[

3 3
d1 2d1 + d0

]
Θ = −ψ1

[
3

2d1

]

20



which we can row reduce to:[
1 1
0 d1 + d0

]
Θ = −ψ1

[
1
d1

]
whence θ1 = −ψ1

d1
d0+d1

and θ0 = −ψ1 − θ1 = −ψ1
d0

d0+d1
. We also compute

φ1 = −ψ1 − θ1 = θ0 and φ2 = θ1 (in the simple version). We use θ0 and φ1 to
compute the bezier curve of the first segment, make a note of θ1, and – assuming
there are more segments – throw away φ2.

For the inner segments, we have the system:[
1 0
A1 B1

]
Θ =

[
θ0
D1

]
which has the solution θ1 = (D1 − A1θ0)/B1. The values of the constants in this
case are:

A1 = d1τ2τ
2
1

B1 = d1τ2τ
2
1(3τ0 − 1) + d0τ0τ

2
1 (3τ2 − 1) − d0τ0τ

2
1
τ3

2 + χ2τ
3
1 (3τ2 − 1)

τ3
2(3τ1 − 1) + χ2τ3

1

D1 = −d1τ2τ
2
1(3τ0 − 1)ψ1

Again, let us consider the simpler case. Then A1 = d1, B1 = 2d1 + d0, and
D1 = −2d1ψ1. Thus θ1 = (−2d1ψ1 − d1θ0)/(2d1 + d0) = −(2ψ1 + θ0) d1

2d1+d0
. We

compute φ1 = −ψ1 − θ1 = −ψ1d0+θ0d1
2d1+d0

and φ2 = θ1. Then we store θ1 for the next
iteration.

The actual curves are then produced from the angles using the same formulae
for the lengths of the control points as in the main algorithm.

At the last stage, we render both segments of the generated curve.

6 Acknowledgements
This package began life as an answer to the question Curve through a sequence
of points with Metapost and TikZ. Once released upon the unsuspecting world,
various questions on the TeX-SX site have prompted new features (and bug-fixes).
Most of these can be found by looking at the list of questions tagged “hobby” on
that site.

References
[1] John D. Hobby. Smooth, easy to compute interpolating splines. Discrete

Comput. Geom., 1:123–140, 1986.

21

http://tex.stackexchange.com/q/54771/86
http://tex.stackexchange.com/q/54771/86
http://tex.stackexchange.com
http://tex.stackexchange.com/questions/tagged/hobby

	1 Introduction
	2 Usage
	2.1 As a to path.
	2.2 The shortcut Method
	2.3 The Plot Handler Method
	2.4 Basic Level PGF Commands

	3 Customisation
	3.1 Algorithm Customisations
	3.2 Edge Cases
	3.3 Reusing Paths
	3.4 Breaking the Path

	4 Implementing Hobby's Algorithm
	5 A Piecewise Version of Hobby's Algorithm
	6 Acknowledgements
	References

