
pgf-blur package

version 1.02

Martin Giese

2012/12/09

Currently maintained by Norbert Preining1

Acknowledgement
This package evolved from a discussion on http://tex.stackexchange.com/. In

particular, the author received invaluable help from Andrew Stacey.

1 Introduction

The ability to paint shadows on arbitrary shapes is a standard feature of
TikZ/PGF. However, these shadows are usually ‘sharp’:

SPLAT!

Such shadows are often optically too intrusive. A more pleasing effect is
achieved if the edges of the shadow are ‘blurred,’ i.e., getting gradually lighter and
more transparent toward the outside. This effect can be achieved in TikZ/PGF
with the circular drop shadow key, but that works only with ellipses and circles.

The pgf-blur package provides blurred shadows that can be added to any
closed path, including node borders:

SPLAT!

The new TikZ options provided by the package are described in section 2 of
this document. Section 3, if present, documents the implementation consisting of
a generic TEX file.

1https://github.com/norbusan/pgf-blur

1

(shadow xshift, shadow yshift)

shadow blur radius

Figure 1: Shadow geometry

2 Package Usage

To use the package, the document needs to say \usepackage{tikz} and

\usetikzlibrary{shadows.blur}

in the preamble.
A blurred shadow is added to a path or node by the option blur shadow, e.g.blur shadow

\begin{tikzpicture}

\filldraw[fill=white, draw=black, blur shadow] (0,0) circle (1);

\node[fill=white, draw=black, blur shadow] at (4,0.5) {\Large Node};

\end{tikzpicture}

which gives

Node

Note that this usually makes sense only with closed paths that are filled (otherwise
the shadow is visible through the path, and one wonders what is throwing the
shadow) and often looks best if used with a drawn outline.

The appearance of the shadow can be fine-tuned by giving arguments to the
blur shadow options. These options do not have any effect if given outside of the
argument of either blur shadow or every shadow (described later)

The shadow is based on a shifted, and possibly scaled copy of the original path.shadow xshift

shadow yshift

shadow scale

These options are described in the TikZ/PGF user manual, and they work in the
same way for blurred shadows. See also Fig. 1. The default values are 3ex for
shadow xshift, −3ex for shadow yshift, and 1 for shadow scale.

Here is an example for the usage of these options:

\begin{tikzpicture}

\filldraw[fill=white, draw=black,

blur shadow={shadow xshift=1ex,

2

shadow yshift=1ex,

shadow scale=1.2}]

(0,0) circle (0.5);

\end{tikzpicture}

Which gives:

Fig. 1 shows how the blur shadow spreads out the boundary of the path overshadow blur radius

a circular region. The intent is to mimic the effect of a circular light source over
the shape. the radius of the “blurring” can be set with the shadow blur radius

option, which has a default value of .4ex.
Here is an example of a drastically enlarged blur radius:

\begin{tikzpicture}

\filldraw[fill=white, draw=black,

blur shadow={shadow blur radius=1.5ex}]

(0,0) circle (0.5);

\end{tikzpicture}

Which gives:

Shadows are transparent. They are always black since a shadow is the absenceshadow opacity

of light. The opacity of the interior of the shadow, i.e. the darkest region can
be controlled with the shadow opacity option. It is given as a percentage, i.e. a
number between 0 and 100. The default is 40.

Here are examples of lighter and darker shadows:

\begin{tikzpicture}

\draw[help lines,step=0.5] (-1,-1) grid (3,1);

\filldraw[fill=white, draw=black,

blur shadow={shadow opacity=20}]

(0,0) circle (0.5);

\filldraw[fill=white, draw=black,

blur shadow={shadow opacity=60}]

(2,0) circle (0.5);

\end{tikzpicture}

Which gives:

3

A close inspection of the shadow in Fig. 1 reveals that if the original path hasshadow blur extra rounding

a corner, then the “lines of equal opacity” in the inner part of the shadow will
also have corners. This is a consequence of the way the shadows are rendered by
default. It gives the impression of the darkest part of the shadow extruding a little
too much into the faded part. This effect can be reduced by adding the option
shadow extra rounding, which has the effect of rounding all corners of the path
before rendering the shadow. The rounding inset can be given as an argument; it
defaults to the current value of the blur radius.

Several points should be remembered when using this option:

• It uses the mechanism that TikZ also uses for the rounded corners option.
This works badly, distorting the path in strange ways, if the individual seg-
ments of the path are too short to be rounded with the given inset. If the
shadows look strange, try reducing the inset, or drop this option altogether.

• Rounding many complex paths can slow TEX down considerably.

• The ideal rounding inset depends on the angle the path has at each corner.
This is not taken into account, the same inset is used everywhere. The
default value is the one that works best with 90° angles, but it also looks
fairly good with other angles.

• With or without this option, the shadows will not be photorealistic.

Here is an example of squares without and with extra rounding applied:

\begin{tikzpicture}

\filldraw[fill=white, draw=black,

blur shadow]

(0,0) rectangle (1,1);

\filldraw[fill=white, draw=black,

blur shadow={shadow blur extra rounding}]

(2,0) rectangle (3,1);

\end{tikzpicture}

Which gives:

The transition of opacity in these shadows is actually not smooth, but proceedsshadow blur steps

in a finite number of discrete steps. Specifically, there is a number n, such that
the (shifted and scaled) original path fades outward to complete transparency in n
steps and within the selected shadow blur radius, and inward to the maximum
opacity of the shadow, also within n steps and the shadow blur radius. This
number of steps n can be selected using the shadow blur steps option. It defaults
to 4, which is enough e.g. for inconspicuous shadows in presentations that nobody
examines with a magnifying glass. The examples in the introduction use 8, under

4

the assumption that readers will have a close look. Fig. 1 uses 10 because the blur
radius is so large.

A large number of steps will slow down both the TEX processing and the PDF
rendering, usually with very little visible impact.

To apply the same set of options to every shadow, it is possible to defineevery shadow

the style every shadow, which is taken from the standard shadow library. For
instance, in the following, darker shadows with more steps are selected for several
shapes:

\begin{tikzpicture}

[every shadow/.style={shadow opacity=60,

shadow blur steps=7}]

\filldraw[fill=white, draw=black, blur shadow]

(0,0) rectangle (1,1);

\node[cloud,shape aspect=2,fill=white, draw=black,

blur shadow]

at (2.5,0.5) {Rain};

\end{tikzpicture}

Which gives:

Rain

2.1 A Note on Nodes

While this library plays nicely with most closed paths, it doesn’t like paths with
non-closed parts. This is particularly annoying when used with standard node
shapes, where you can’t do much about the paths. Take the rectangle split

shape for instance:

\begin{tikzpicture}

\node[rectangle split, rectangle split parts=3, draw, fill=white,

blur shadow={shadow xshift=1em}] {...};

\end{tikzpicture}

Cake

icing: Icing

getIcing()

Note how the part separation lines produce white bars in the shadow. This is
really hard to avoid in general. There are two simple workarounds: a) choosing a
very small shadow xshift so most the “bar” gets hidden behind the shape, or b)
putting the node inside a simple rectangle node and add a shadow to the latter.
For solution b) to work, the inner padding of the outer node has to be removed.
This in turn requires it to be reinstated for the inner node. Here’s the example
showing both workarounds:

5

\begin{tikzpicture}

\node[rectangle split, rectangle split parts=3,

draw, fill=white,

blur shadow={shadow xshift=0.25ex}] at (-2,0) {...};

\node[blur shadow={shadow xshift=1em},inner sep=0pt] at (2,0) {

\tikz\node[rectangle split, rectangle split parts=3,

draw, fill=white, inner sep=0.333em] {...};};

\end{tikzpicture}

Cake

icing: Icing

getIcing()

Cake

icing: Icing

getIcing()

Solution b) is fine for rectangular outlines, but it wont work for e.g. the
cylinder shape.

3 Implementation

\fileversion

\filedate

We define the file version and date, and import the original shadow code for the
offset and scale parameters.

1 〈∗texfile〉
2 \def\fileversion{1.02}

3 \def\filedate{2012/12/09}

4 \message{ v\fileversion, \filedate}

5 \usetikzlibrary{shadows}

6 \usetikzlibrary{calc}

\ifpgfbs@invert@fading An \if to control whether to invert the fading or not.

7 \newif\ifpgfbs@invert@fading

\pgfbs@fading@count A count to make the names unique

8 \newcount\pgfbs@fading@count

9 \pgfbs@fading@count=0\relax

shadow blur radius

shadow blur extra rounding

shadow blur steps

shadow opacity

Next we define the various TikZ options, with their default values. The options
shadow xshift, shadow yshift, shadow scale are imported from the standard
TikZ shadow library, so we don’t need to do anything for them. Note how the
default value of shadow blur extra rounding is by default set to the blur radius.
This works because the value of this key is evaluated before it is used. All other
options just store values in a couple of macros.

10 \tikzset{

11 /tikz/shadow blur radius/.store in=\pgfbs@radius,

12 /tikz/shadow blur radius=.4ex,

13 /tikz/shadow blur extra rounding/.store in=\pgfbs@extra@rounding,

14 /tikz/shadow blur extra rounding=\pgfutil@empty,

15 /tikz/shadow blur extra rounding/.default=\pgfbs@radius,

6

16 /tikz/shadow blur steps/.store in=\pgfbs@steps,

17 /tikz/shadow blur steps=4,

18 /tikz/shadow blur invert/.is if=pgfbs@invert@fading,

19 /tikz/shadow opacity/.store in=\pgfbs@opacity,

20 /tikz/shadow opacity=40,

blur shadow The user level option blur shadow sets the shadow xshift, shadow yshift,
shadow scale options to more useful defaults than the ones inherited from the
shadows library. It includes any options set in the every shadow style, and the
argument to blur shadow. Rendering the shadow is declared as a .preaction on
the path. TikZ will take care of saving the path for us.

21 /tikz/blur shadow/.style={

22 shadow scale=1,

23 shadow xshift=.5ex,

24 shadow yshift=-.5ex,

25 preaction=render blur shadow,

26 every shadow,

27 #1,

28 },

render blur shadow The following does the actual shadow rendering. After some preliminary compu-
tation of dimensions, shifting and scaling is done using a canvas transform. The
actual blurring effect is done using a special fading. Since PGF insists on cen-
tering every fading when it’s constructed, it has to be shifted back again when
it’s installed. The shadow is painted by filling a large black rectangle using the
constructed fading.

29 /tikz/render blur shadow/.code={

30 \pgfbs@savebb

31 \global\advance\pgfbs@fading@count by 1\relax

32 \pgfsyssoftpath@getcurrentpath{\pgfbs@input@path}%

33 \pgfbs@compute@shadow@bbox

34 \pgfbs@process@rounding{\pgfbs@input@path}{\pgfbs@fadepath}%

35 \pgfbs@apply@canvas@transform

36 \colorlet{pstb@shadow@color}{white!\pgfbs@opacity!black}%

37 \ifpgfbs@invert@fading

38 \pgfdeclarefading{shadowfading-\the\pgfbs@fading@count}{\pgfbs@paint@invert@fading}%

39 \else

40 \pgfdeclarefading{shadowfading-\the\pgfbs@fading@count}{\pgfbs@paint@fading}%

41 \fi

42 \pgfsetfillcolor{black}%

43 \pgfsetfading{shadowfading-\the\pgfbs@fading@count}%

44 {\pgftransformshift{\pgfpoint{\pgfbs@midx}{\pgfbs@midy}}}%

45 \pgfbs@usebbox{fill}%

46 \pgfbs@restorebb

47 },

48 }

\pgfbs@savebb Shadow rendering works with a fading. For a fading to contain PGF code, it must
contain a pgfpicture. And nested pgfpictures mess up the bounding box of the

7

surrounding picture. Which is why we save the current picture bounding box at
the beginning of the shadow code and restore it at the end. Thanks go to Andrew
Stacey for this!

49 \def\pgfbs@savebb{%

50 \edef\pgfbs@restorebb{%

51 \global\pgf@picminx=\the\pgf@picminx\relax

52 \global\pgf@picmaxx=\the\pgf@picmaxx\relax

53 \global\pgf@picminy=\the\pgf@picminy\relax

54 \global\pgf@picmaxy=\the\pgf@picmaxy\relax

55 }%

56 }

\pgfbs@restorebb Executing \pgfbs@savebb sets this bounding box restoring macro to something
useful.

57 \def\restorebb{}%

\pgfbs@process@rounding This macro prepares the path by taking care of all things having to do with
rounding. First, it applies extra rounding to the path if requested by the
shadow blur extra rounding option. Second, it removes all rounding tokens
in the path by calling the \pgfprocessround macro. This is because rounding
tokens don’t work well with the fading code for some reason or other. #1 must be
a PGF soft path. #2 must be a macro into which the resulting soft path will be
stored.

58 \def\pgfbs@process@rounding#1#2{

59 \expandafter\ifx\pgfbs@extra@rounding\pgfutil@empty%

60 \pgfprocessround{#1}{#2}%

61 \else%

62 \pgfmathsetmacro\pgfbs@exrd@val{\pgfbs@extra@rounding}%

63 \pgfbs@roundpath{#1}{\pgfbs@exrd@val pt}%

64 \pgfsyssoftpath@getcurrentpath{\pgfbs@extraroundedpath}%

65 \pgfprocessround{\pgfbs@extraroundedpath}{#2}%

66 \fi%

67 }

\pgfbs@roundpath \pgfbs@roundpath{#1}{#2} rounds every potential corner in path #1 with an
inset of at least #2. Corners that are already rounded in #1 are either left intact
if their insets are ≥#2, or the insets are increased to #2. Any rectangle tokens are
resolved into moveto/lineto/closepath with rounding. The result is appended to
PGF’s “current path.”

The code works by giving an appropriate definition for each of the PGF soft
path tokens and then executing the path.

68 \def\pgfbs@roundpath#1#2{%

69 {%

70 \def\pgfbs@rp@skipround{%

71 \let\pgfbs@rp@possibleround\pgfbs@rp@insertround}%

72 \def\pgfbs@rp@insertround{\pgfsyssoftpath@specialround{#2}{#2}}%

73 \let\pgfbs@rp@possibleround\pgfbs@rp@insertround%

74 %

8

75 \def\pgfsyssoftpath@movetotoken##1##2{%

76 \pgfsyssoftpath@moveto{##1}{##2}}%

77 \def\pgfsyssoftpath@linetotoken##1##2{%

78 \pgfbs@rp@possibleround\pgfsyssoftpath@lineto{##1}{##2}}%

79 \def\pgfsyssoftpath@rectcornertoken##1##2##3##4##5{%

80 \pgf@xa=##1\relax%

81 \advance\pgf@xa by##4%

82 \pgf@ya=##2\relax%

83 \advance\pgf@ya by##5%

84 \pgfsyssoftpath@moveto{##1}{##2}%

85 \pgfbs@rp@possibleround%

86 \pgfsyssoftpath@lineto{\the\pgf@xa}{##2}%

87 \pgfbs@rp@possibleround%

88 \pgfsyssoftpath@lineto{\the\pgf@xa}{\the\pgf@ya}%

89 \pgfbs@rp@possibleround%

90 \pgfsyssoftpath@lineto{##1}{\the\pgf@ya}%

91 \pgfbs@rp@possibleround%

92 \pgfsyssoftpath@closepath}%

93 \def\pgfsyssoftpath@curvetosupportatoken%

94 ##1##2##3##4##5##6##7##8{%

95 \pgfbs@rp@possibleround%

96 \pgfsyssoftpath@curveto{##1}{##2}{##4}{##5}{##7}{##8}}%

97 \def\pgfsyssoftpath@closepathtoken##1##2{%

98 \pgfbs@rp@possibleround\pgfsyssoftpath@closepath}%

99 \def\pgfsyssoftpath@specialroundtoken##1##2{%

100 \pgfmathsetmacro\pgfbs@rp@ra{max(##1,#2)}%

101 \pgfmathsetmacro\pgfbs@rp@rb{max(##2,#2)}%

102 \pgfsyssoftpath@specialround%

103 {\pgfbs@rp@ra pt}{\pgfbs@rp@rb pt}%

104 \let\pgfbs@rp@possibleround\pgfbs@rp@skipround%

105 }

106 #1%

107 }

108 }

\pgfbs@compute@shadow@bbox

\pgfbs@minx

\pgfbs@midx

\pgfbs@maxx

\pgfbs@miny

\pgfbs@midy

\pgfbs@maxy

\pgfbs@shadow@bbox

This macro figures out the bounding box of the shadow: it’s the same as the
bounding box of the current path, but enlarged by twice (for the inverse shadow)
the blur radius in each direction. It also computes the coordinates of the center of
the bounding box. These are stored in macros \pgfbs@{min|mid|max}{x|y}. It also
creates a soft path for the bounding box which is stored in \pgfbs@shadow@bbox.

109 \def\pgfbs@compute@shadow@bbox{%

110 \edef\pgfbs@minx{\the\pgf@pathminx}%

111 \edef\pgfbs@miny{\the\pgf@pathminy}%

112 \edef\pgfbs@maxx{\the\pgf@pathmaxx}%

113 \edef\pgfbs@maxy{\the\pgf@pathmaxy}%

114 \pgfmathsetmacro\pgfbs@midx{0.5*(\pgfbs@minx + \pgfbs@maxx)}%

115 \pgfmathsetmacro\pgfbs@midy{0.5*(\pgfbs@miny + \pgfbs@maxy)}%

116 \pgfmathsetmacro\pgfbs@minx{\pgfbs@minx - 2*\pgfbs@radius}%

117 \pgfmathsetmacro\pgfbs@miny{\pgfbs@miny - 2*\pgfbs@radius}%

9

118 \pgfmathsetmacro\pgfbs@maxx{\pgfbs@maxx + 2*\pgfbs@radius}%

119 \pgfmathsetmacro\pgfbs@maxy{\pgfbs@maxy + 2*\pgfbs@radius}%

120 \pgfmathsetmacro\pgfbs@wd{\pgfbs@maxx - \pgfbs@minx}%

121 \pgfmathsetmacro\pgfbs@ht{\pgfbs@maxy - \pgfbs@miny}%

122 \pgfsyssoftpath@setcurrentpath\pgfutil@empty%

123 \pgfsyssoftpath@rect{\pgfbs@minx pt}{\pgfbs@miny pt}%

124 {\pgfbs@wd pt}{\pgfbs@ht pt}%

125 \pgfsyssoftpath@getcurrentpath{\pgfbs@shadow@bbox}%

126 \pgfsyssoftpath@setcurrentpath\pgfutil@empty%

127 }

\pgfbs@set@fading@pic@bbox Set the bounding box of the fading picture painted by \pgfbs@paint@fading.
Normally, the bounding box is updated automatically, but this doesn’t happen
when PGF’s soft paths are used. The code that applies a fading needs the dimen-
sions of the fading to be correct. So we explicitly set the picture bounding box
according to the previously computed values. Thanks again to Andrew Stacey for
pointing out this subtlety!

128 \def\pgfbs@set@fading@pic@bbox{

129 \global\pgf@picminx=\pgfbs@minx pt\relax

130 \global\pgf@picminy=\pgfbs@miny pt\relax

131 \global\pgf@picmaxx=\pgfbs@maxx pt\relax

132 \global\pgf@picmaxy=\pgfbs@maxy pt\relax

133 }

\pgfbs@usefadepath The code of the render blur shadow option stores the pre-processed soft path
into the macro \pgfbs@fadepath. This macro ‘uses’ this path by executing
\pgfusepath{#1} on it.

134 \def\pgfbs@usefadepath#1{%

135 \pgfsyssoftpath@setcurrentpath{\pgfbs@fadepath}%

136 \pgfsyssoftpath@flushcurrentpath%

137 \pgfusepath{#1}%

138 }

\pgfbs@usebbox This is similar to the previous macro, but it ‘uses’ the bounding box path.

139 \def\pgfbs@usebbox#1{%

140 \pgfsyssoftpath@setcurrentpath{\pgfbs@shadow@bbox}%

141 \pgfsyssoftpath@flushcurrentpath%

142 \pgfusepath{#1}%

143 }

\pgfbs@usefadeandbbox This is similar to the previous macros, but it ‘uses’ both the fading path and the
bounding box path.

144 \def\pgfbs@usefadeandbbox#1{%

145 \let\pgfbs@temppath\pgfbs@fadepath

146 \expandafter\expandafter\expandafter\def\expandafter\expandafter\expandafter\pgfbs@temppath\expandafter\expandafter\expandafter{\expandafter\pgfbs@temppath\pgfbs@shadow@bbox}%

147 \pgfsyssoftpath@setcurrentpath{\pgfbs@temppath}%

148 \pgfsyssoftpath@flushcurrentpath%

149 \pgfusepath{#1}%

150 }

10

\pgfbs@apply@canvas@transform This achieves the scaling and shifting of the shadow. It is done by a canvas
transform to avoid iterating through a soft path and transforming many coordi-
nates inside TEX. Scaling is ‘around’ the bounding box mid point computed by
\pgfbs@compute@shadow@bbox.

151 \def\pgfbs@apply@canvas@transform{

152 \pgflowlevel{

153 \pgftransformshift{\pgfpoint{\pgfbs@midx}{\pgfbs@midy}}

154 \pgftransformscale{\pgfkeysvalueof{/tikz/shadow scale}}

155 \pgftransformshift{\pgfpoint%

156 {\pgfkeysvalueof{/tikz/shadow xshift}-\pgfbs@midx}

157 {\pgfkeysvalueof{/tikz/shadow yshift}-\pgfbs@midy}

158 }

159 }

160 }

\pgfbs@paint@fading This paints the actual fading picture. It works by repeatedly drawing the
\pgfbs@fadepath with different line widths and different shades of gray, leading
to different opacity. First, the outer part of the fading is drawn. Then, remaining
operations are clipped to the inside of the path. Next, the path is filled with the
shadow opacity. Finally, the inner part of the fading is drawn. As mentioned
previously, the bounding box needs to be set explicitly.

161 \def\pgfbs@paint@fading{

162 \pgfpicture

163 \pgfsetbaseline{\pgf@picminy}%

164 % fix bounding box.

165 \pgfbs@set@fading@pic@bbox

166 % compute increments for line width and opacity

167 \pgfmathsetmacro\pgfbs@op@step{50/\pgfbs@steps}

168 \pgfmathsetmacro\pgfbs@wth@step{4*\pgfbs@radius/(2*\pgfbs@steps-1)}

169 % draw the outer part of the fading,

170 % starting with lightest, outermost line

171 \pgfsetroundjoin

172 \pgfmathsetmacro\pgfbs@max@i{\pgfbs@steps-2}

173 \pgfmathsetmacro\pgfbs@wth{2*\pgfbs@radius}

174 \pgfmathsetmacro\pgfbs@op{100-0.5*\pgfbs@op@step}

175 \foreach \pgfbs@i in {0,...,\pgfbs@max@i} {

176 \pgfsetlinewidth{\pgfbs@wth pt}

177 \pgfsetstrokecolor{black!\pgfbs@op!pstb@shadow@color}

178 \pgfbs@usefadepath{stroke}

179 \pgfmathsetmacro\pgfbs@wth{\pgfbs@wth-\pgfbs@wth@step}

180 \global\let\pgfbs@wth=\pgfbs@wth

181 \pgfmathsetmacro\pgfbs@op{\pgfbs@op-\pgfbs@op@step}

182 \global\let\pgfbs@op=\pgfbs@op

183 }

184 % clip to inside of path

185 \scope

186 \pgfbs@usefadepath{clip}

187 % fill inside with final darkest shadow color

188 \pgfsetfillcolor{pstb@shadow@color}

11

189 \pgfbs@usebbox{fill}

190 % draw the inner part of the fading,

191 % starting with the darkest, innermost line

192 \pgfmathsetmacro\pgfbs@wth{2*\pgfbs@radius}

193 \pgfmathsetmacro\pgfbs@op{0.5*\pgfbs@op@step}

194 \foreach \pgfbs@i in {0,...,\pgfbs@max@i} {

195 \pgfsetlinewidth{\pgfbs@wth pt}

196 \pgfsetstrokecolor{black!\pgfbs@op!pstb@shadow@color}

197 \pgfbs@usefadepath{stroke}

198 \pgfmathsetmacro\pgfbs@wth{\pgfbs@wth-\pgfbs@wth@step}

199 \global\let\pgfbs@wth=\pgfbs@wth

200 \pgfmathsetmacro\pgfbs@op{\pgfbs@op+\pgfbs@op@step}

201 \global\let\pgfbs@op=\pgfbs@op

202 }

203 \endscope

204 % a final stroke to hide clip/antialiasing artifcats

205 \pgfsetstrokecolor{black!50!pstb@shadow@color}

206 \pgfsetlinewidth{0.5*\pgfbs@wth@step}

207 \pgfbs@usefadepath{stroke}

208 \endpgfpicture

209 }

\pgfbs@paint@invert@fading This is an inverse fading.

210 \def\pgfbs@paint@invert@fading{

211 \pgfpicture

212 \pgfsetbaseline{\pgf@picminy}%

213 % fix bounding box.

214 \pgfbs@set@fading@pic@bbox

215 % compute increments for line width and opacity

216 \pgfmathsetmacro\pgfbs@op@step{50/\pgfbs@steps}

217 \pgfmathsetmacro\pgfbs@wth@step{4*\pgfbs@radius/(2*\pgfbs@steps-1)}

218 % draw the outer part of the fading,

219 % starting with lightest, outermost line

220 \pgfsetroundjoin

221 \pgfmathsetmacro\pgfbs@max@i{\pgfbs@steps-2}

222 \pgfmathsetmacro\pgfbs@wth{2*\pgfbs@radius}

223 \pgfmathsetmacro\pgfbs@op{0.5*\pgfbs@op@step}

224 \foreach \pgfbs@i in {0,...,\pgfbs@max@i} {

225 \pgfsetlinewidth{\pgfbs@wth pt}

226 \pgfsetstrokecolor{black!\pgfbs@op!pstb@shadow@color}

227 \pgfbs@usefadepath{stroke}

228 \pgfmathsetmacro\pgfbs@wth{\pgfbs@wth-\pgfbs@wth@step}

229 \global\let\pgfbs@wth=\pgfbs@wth

230 \pgfmathsetmacro\pgfbs@op{\pgfbs@op+\pgfbs@op@step}

231 \global\let\pgfbs@op=\pgfbs@op

232 }

233 % clip to inside of path

234 \scope

235 \pgfseteorule

236 \pgfbs@usefadeandbbox{clip}

12

237 % fill inside with final darkest shadow color

238 \pgfsetfillcolor{pstb@shadow@color}

239 \pgfbs@usebbox{fill}

240 \endscope

241 \scope

242 \pgfbs@usefadepath{clip}

243 % draw the inner part of the fading,

244 % starting with the darkest, innermost line

245 \pgfmathsetmacro\pgfbs@wth{2*\pgfbs@radius}

246 \pgfmathsetmacro\pgfbs@op{100-0.5*\pgfbs@op@step}

247 \foreach \pgfbs@i in {0,...,\pgfbs@max@i} {

248 \pgfsetlinewidth{\pgfbs@wth pt}

249 \pgfsetstrokecolor{black!\pgfbs@op!pstb@shadow@color}

250 \pgfbs@usefadepath{stroke}

251 \pgfmathsetmacro\pgfbs@wth{\pgfbs@wth-\pgfbs@wth@step}

252 \global\let\pgfbs@wth=\pgfbs@wth

253 \pgfmathsetmacro\pgfbs@op{\pgfbs@op-\pgfbs@op@step}

254 \global\let\pgfbs@op=\pgfbs@op

255 }

256 \endscope

257 % a final stroke to hide clip/antialiasing artifcats

258 \pgfsetstrokecolor{black!50!pstb@shadow@color}

259 \pgfsetlinewidth{0.5*\pgfbs@wth@step}

260 \pgfbs@usefadepath{stroke}

261 \endpgfpicture

262 }

263 〈/texfile〉

13

