
The dataref package

Christian Dietrich 2013-2016
stettberger@dokucode.de

https://github.com/stettberger/dataref

2022/03/25 v0.7

1 Introduction

Writing scientific texts is a craft. It is the craft of communicating your results to
your colleagues and to the curious world public. Often your conclusions are based
upon facts and numbers that you gathered during your research for the specific
topic. You might have done many experiments and produced lot of data. The
craft of writing is to guide your reader through a narrative that is based upon
that data. But there may be many versions of that data. Perhaps you found a
problem in your experiment, while already writing, that forces you back into the
laboratory. After a while, the moon has done its circle many times, you return
from that dark place and your methodology has improved as significantly as your
data has. But now you have to rewrite that parts of the data that reference the
old data points.

The dataref is here to help you with managing your data points. It provides
you with macro style keys that represent symbolic names for your data points.
You can reference those symbolic names with \dref, use them in calculations
to have always up-to-date percentage values, define projections between sets of
data points and document them. dataref also introduces the notion of assertions
(\drefassert) for your results to ensure that your prosa text references fit the
underlying data.

2 Usage (or 32 mice)

From the 32 mice in the
experiment, 12 died.

\drefset{/med A/mice count}{32}

\drefset{/med A/recovered}{20}

From the \dref{/med A/mice count} mice in the experiment,

\drefcalc[prefix=/med A]{d(/mice count)-d(/recovered)} died.

2.1 Design Principles

Before we jump into the description of dataref, let us look a little bit into the
design principles of dataref. By understanding the principles, you will be more

1

stettberger@dokucode.de
https://github.com/stettberger/dataref

@init @options @get @calc @print @set

Set up a clean
working environ-
ment.

Parse the user-
defined options
and fill up all sub-
sequent phases.

Load the main
datapoint into
\drefresult and
reference it.

Perform calcula-
tions on the main
datapoint, includ-
ing unit scaling.

Format and insert
the result into the
document body.

Save the result
as a datapoint or
macro.

Figure 1: The dataref Pipeline

productive and embedding data into your document will become easier.

First of all, dataref is built on top of pgfkeys and pgfmath from the PGF/TiKZ
macro packages. While the former provides a usable user interface to provide
options to dataref, the later is used to perform computation on your datapoints.
If you are interested into these two excellent TEX packages, please look at texdoc
pgfmanual for further information.

There are two aspects of dataref: setting datapoints and referencing datapoints.
While setting datapoints is kind of boring, we have a wide variety of options when
it comes to referencing. The expansion of datapoints is done in multiples phases
(see Figure 1).

The dataref macros are different regarding the phases they include or omit and
in their default settings. In the following, we will discuss all options and macros
you can use to reference your datapoints. By default, the \drefresult is always
set to the result of the pipeline.

2.2 Setting Datapoints

\drefset[⟨options⟩]{⟨name⟩}{⟨value⟩} (@set)

\drefset{/med A/mice race}{Black Six}

\drefset{/med A/mice count}{32}

\drefset{/med A/dead after 24h}{6}

\drefset{/med A/dead after 48h}{1}

The \drefset command is used to define the symbolic datapoints. The name of
a datapoint may contain virtually all characters, including spaces and slashes. It
is good practice to use a hierarchy to structure your data point names. The value
might be any string, while the focus of dataref is on numerical datapoints. The
\drefset command works outside the pipeline model (Figure 1) for performance
reasons. It virtually consists only of the @options and @set stage.

\drefsave[⟨options⟩]{⟨name⟩}{⟨value⟩} (@set)

2

Besides setting the datapoint, \drefsave writes it to the aux file and, therefore,
makes it available in the next LATEX run from the very beginning. The ignoremiss-
ing option is useful to reference the saved keys at an earlier place in the document.

/dref/set=⟨key⟩ (no default)

Inserts a \drefset to the @set that captures the current result and saves it to the
given datapoint.

/dref/save=⟨key⟩ (no default)

Inserts a \drefsave to the @set that captures the current result and saves it
to the given datapoint. Since \drefsave is used the result is available from the
beginning of the document.

/dref/to macro=⟨macro⟩ (no default)

The current result is saved to the given macro.

32 32
32 32
5

\dref[set=/foo]{/med A/mice count} \dref{/foo}\\

\dref[ignoremissing]{/bar} \dref[save=/bar]{/med A/mice count}\\

\drefcalc*[to macro=\myresult]{3+2} \myresult

/dref/prefix=⟨key prefix ⟩ (no default, initially ””)

On every key retrieval or setting of a datapoint this prefix is added. It is a value-
typed PGF key, so operations like prefix/.append are possible.

\drefinput[⟨prefix ⟩]{⟨filename⟩}
Reads in the given TEX/dataref file with the given key prefix. Therefore, all
included \drefset commands are define their keys with the given prefix. This is
useful to include several files that resulted from different experiments but include
equal datapoint keys.

This command uses \subimport from the import package to read the file. Hence,
if there is an \drefinput in an included file, it search its filename relative to its
own directory.1.

2.3 Referencing Datapoints

\dref*[⟨options⟩]{⟨name⟩} (@options={print=default}, @get, @calc, @print, @set)

\dref[⟨options⟩]{⟨name⟩} (@options={print=raw}, @get, @calc, @print, @set)

This macro is used to reference a single symbolic data point. The value stored in
that datapoint is inserted into the text. \dref additionally marks the data point
as used; it will appear in the datagraphy (see Section 2.8). The starred variant
does not attempt to parse the datapoint as a numerical value, but outputs the
saved string.

Black Six
32
2.00 · 101

\dref*{/control group/mice race}\\

\dref*{/control group/mice count}\\

\dref[sci,precision=2,zerofill=true]{/med A/recovered}

1In former versions, \drefinput relied directly on \input and, therefore, the filename was
interpreted relative to the root file.

3

\drefvalueof{⟨name⟩} (@get, @print)

\drefref{⟨name⟩} (@get)

Black Six \drefvalueof{/med A/mice race}

Since \dref is not expandable, it cannot be used in all circumstances. Therefore,
\drefvalueof bypasses all internal bookkeeping and provides access to the raw
datapoint value. \drefref can be used to mark the datapoint as used to let it
appear in the datagraphy.

/dref/ignoremissing=⟨true-or-false⟩ (default true, initially false)

/dref/defaultvalue=⟨value⟩ (no default, initially 1.0)

By default, dataref produces an error if the referenced datapoint is undefined. If
ignoremissing is given, the defaultvalue is used. This key is useful in combination
with \drefsave. Furthermore, it is possible to extract the missing keys from the
aux file and to retrieve it from a secondary source (e.g. database, wikidata, etc).

undefined \dref*[ignoremissing,defaultvalue=undefined]{blah}

\drefsethelp{⟨pattern⟩}{⟨text⟩}
\drefhelp{⟨name⟩}

dataref comes with a simple method for defining documentation for data points.
This help can for example be used to communicate what is the concrete semantics
of the data point. This is of special interest when writter and data gatherer are not
the same person. \drefsethelp takes two arguments: first a regular expression
that matches the symbolic data point, second the help text.

\drefsethelp{.*/mice race}{The mice race used for experiments

heavily influences the outcome of the results}

The documentation for a datapoint is obtained by using the \drefhelp macro.
It checks all defined documentation strings (in linear order, first defined, first
matched), and prints the first matching help text. With LuaTeX: only Lua
(string.find) regular expressions are supported as patterns.

The mice race used for
experiments heavily in-
fluences the outcome of
the results

\drefhelp{/med A/mice race}

\drefresult

Is set in the @set phase to the result of the currently executed pipeline.

2.4 Calculations and Math Tools

\drefcalc[⟨options⟩]{⟨expression⟩} (@calc, @print, @set)

\drefcalc*[⟨options⟩]{⟨expression⟩} (@calc, @set)

4

\drefformat*[⟨options⟩]{⟨number⟩} (@print)

The \drefcalc is the core function of calculating with data points. It is based
on the pgfmath engine, but allows also the usage of symbolic datapoints within
mathematical expressions. Datapoints can either are inserted into the calculations
with the \(⟨path ⟩) or the \ata("⟨path ⟩") notation. The starred variant of
\drefcalc does not print the result, but only sets the result macros.

It is important to note, that \drefcalc always uses the /pgf/fpu environment.
The FPU feature of pgfmath is used to handle large numbers, which may occur
often when handling experiment data points.

91.67
3,200
3,200

4

\drefcalc{(4+7)/12 * 100}\\

\drefcalc{d(/med A/mice count) * 100}\\

\drefcalc{data("/med A/mice count") * 100}\\

\drefcalc*{1+3}\\

\drefresult

Since the default printing mechanism of dataref utilizes PGF, all options from
/pgf/number format can be directly used in the options. \drefformat does only
the printing. For documentation on the available options, please consult the PGF
manual.

0.3333
1.23 · 108
5
8
0.63

\drefcalc[precision=4]{1/3}\\

\drefcalc[sci]{123456789}\\

\drefcalc[prefix=/med A/,frac]{d(recovered)/d(mice count)}\\

\drefformat[fixed zerofill, precision=2]{\drefresult}

2.5 Units and Unit Scaling

dataref allows to give the unit of a datapoint and enforces the correct combi-
nation of units when using them in calculations. dataref units can be arbitrary
combinations of macros and strings, which allows the combination with the SIU-
nitX package.

/dref/unit=⟨unit⟩ (no default)

The unit of a datapoint is loaded in the @get phase, and stored in the @set phase
of the dataref pipeline.

\drefset[unit=ms]{/duration}{5555}

\drefset[unit=\joule]{/power}{1234}

/dref/unit/format=⟨formatting style⟩ (no default, choice)

/dref/unit/format default=⟨formatting style⟩ (initially plain)

If a datapoint with unit is referenced, the unit is printed after the value. The
formatting mechanism can be exchanged, in order to omit the unit, or to use
SIUnitX for properly print it. By default, the unit/format default is set in
the @init phase. If you are using SIUnitX in your document, it is safe to set the
default value accordingly. Currently, the values false, plain, and siunitx are
valid formatting styles.

5

5,555; 5,555ms; 1,234 J
\drefkeys{unit/format default=siunitx}

\dref[unit/format=false]{/duration}; \dref{/duration};

\dref{/power}

/dref/unit/new scala=⟨scala⟩ (no default)

dataref allows to define scaled units and conversion between the members of the
scala. A scala definition is a list of units with scaling factors between them.

\drefkeys{

unit/new scala={

1/y, 365/d, 24/h, 60/m, 60/s, 1000/ms, 1000/us, 1000/ns

},

unit/new scala={

1/\kilo\joule, 1000/\joule, 1000/\milli\joule,

1000/\micro\joule, 1000/\nano\joule

}

}

/dref/unit/scale to=⟨unit⟩ (no default)

With a defined scala, you can scale to any unit on that scala automatically. In
the example, we use unit to set the unit of plain value to nano joule, and scale
everything to milli joule.

1.23 · 10−3 mJ
4.14mJ
2.14 · 105 mJ
2.4 · 10−5 mJ

\foreach \x in {1234, 4135413, 213516513245, 24} {%

\drefformat[

unit=\nano\joule,

unit/scale to=\milli\joule]{\x}\\

}

/dref/unit/scale to auto=⟨optimum number⟩ (default 50)

With scale to auto, the appropriate unit is chosen automatically. The algorithm
tries every unit on the scala and chooses the unit, where the numerical value after
scaling is nearest to the ⟨optimum number⟩. So with a optimum number of 50,
5000 seconds are scaled to 1.39 h instead of 1.39 h.

1.23 s
1.15 h
6.77 y
24ms

\foreach \x in {1234, 4135413, 213516513245, 24} {%

\drefformat[unit=ms, unit/scale to auto]{\x}\\

}

2.6 Relating Datapoints

\drefrel*[⟨options⟩]{⟨key or value⟩} (@calc, @set)

\drefrel[⟨options⟩]{⟨key or value⟩} (@calc, @print, @set)

Often, datapoints are set in relation to each other. This can either be done with
\drefcalc or, more explictily, with \drefrel. The different options that come
along \drefrel, add steps to the @calc phase and can, therefore, be combinated

6

with any other dref macro that includes the @calc phase.

All operations operate on the current result, which is initially the given key or
value from the mandatory argument.

32.52 \drefrel[percent of=123]{40}

The different relation operations try to have a speaking name, such that the TEX
code is easily understandable by the writer. This explicit notation aims to prevent
common mistakes, like confusing denominator and numerator.

The starred version of \drefrel does not print any number, but only saves the
result in \drefresult. Instead of only taking datapoint keys, \drefrel, as well
as the relating operations, take either a key or a bare number as you can see from
the example.

/dref/scale by=⟨key or value⟩ (no default)

Scales the current value by the given factor, which must be unit less. The resulting
unit is untouched.

/dref/percent (no default)

Scales the current value by 100. The unit is not changed.

/dref/negate (no default)

Scales the current value by -1. The resulting unit is untouched.

/dref/divide by=⟨key or value⟩ (no default)

Divides the current value by the given factor, which must be unit less. The
resulting unit is untouched.

/dref/abs (no default)

Calculate the absolute value.

/dref/factor of=⟨key or value⟩ (no default)

/dref/percent of=⟨key or value⟩ (no default)

The factor of operation gives the portion the current value in relation to the
given base value. In easy words: a division. This macro ensures, that base and
current vale have the same unit or are unit less. The result of this operation is
unit less. The percent of operation, furthermore, scales the result with 100 to
get a percentage.

/dref/increase from=⟨key or value⟩ (no default)

/dref/decrease from=⟨key or value⟩ (no default)

/dref/increase factor from=⟨key or value⟩ (no default)

/dref/decrease factor from=⟨key or value⟩ (no default)

/dref/increase percent from=⟨key or value⟩ (no default)

/dref/decrease percent from=⟨key or value⟩ (no default)

In a situation, where a datapoint is the result of a changed experiment setup, the
value normally shows an increased or decrease numerical value. This family of
operations calculates this delta, assuming it is an increase or decrease. The factor
operations scale the result to the base value, and the percent operations give this

7

scaled value as a percentage.

25
0.05
5%

\drefrel[increase from=500]{525}\\

\drefrel[increase factor from=500,fixed]{525}\\

\drefrel[increase percent from=500]{525}\,\%

2.7 Helper Utilities

\drefrow[⟨options⟩]{⟨comma-separated list⟩}{⟨key template⟩}
\drefrow*{⟨comma-separated list⟩}{⟨template⟩}

Often different columns in a table have to be obtained from your data points.
Often those rows and columns are similar. Generating parts of tables within
LATEXis very tricky, so dataref provides you with \drefrow. This macro iterates
over a comma-separated list of values and fills out a macro which is interpreted
as a symbolic data point. The entries are seperated with & and printed. In the
starred variant the resulting text is not interpreted as symbolic name, but as a
macro.

Both, unstarred and starred variant take a template (a macro body) that is ex-
panded once for every item in the given list. The first replacement #1 is list item
and the second #2 is the current index starting from 0. The unstarred variant in-
terprets the expanded result as a datapoint key and uses \dref to expand it; the
optional parameter is passed through to every invocation of \dref. The starred
variant does not wrap the result into \dref, and, therefore, is more flexible.

4 7 21
6 12 20

\begin{tabular}{|c|c|c|}\hline

\drefrow{dead after 24h,dead after 48h,recovered}

{/control group/#1}\\\hline

\drefrow{dead after 24h,dead after 48h,recovered}%

{/med A/#1}\\\hline

\end{tabular}

\drefassert{⟨expr⟩} (@calc)

Sometimes the underlying data changes while you are writing. But what if your
prose text relies on certain characteristics of the data. \drefassert uses a pgf-
math expression that evaluates to true or false. When the assertion holds (true)
nothing happens, only a terminal message is printed. When it does not hold
(false) the compilation is aborted.

Of the more than thirty
infected mice...

\drefassert{data("/control group/mice count") > 30}

Of the more than thirty infected mice...

/dref/noassert=⟨true or false⟩ (default true)

The noassert deescalates all assertion errors to mere warnings. This option can
also be given at the \usepackage invication.

/dref/annotate=⟨annotation type⟩ (no default, initially none, choice)

/dref/annotate=none (choice item)

8

/dref/annotate=footnote (choice item)

/dref/annotate=pdfcomment (choice item)

/dref/annotate=typeout (choice item)

While writing a document it is desirable to know, what key is used, while writing
the text and generating the document. Therefore dataref provides the possibility
to annotate values. The default option none disables this kind of annotation. The
pdfcomment option uses pdf annotations. Be aware that those annotations work
properlyy only on a few selected PDF readers2.

Black Sixa 32b 33.33

a\dref*[]{/control group/mice race}
b\dref[]{/control group/mice count}

\drefkeys{annotate=footnote}

\dref*{/control group/mice race}

\dref{/control group/mice count}

\drefcalc[annotate=pdfcomment]{100/3}

2.8 Datagraphy

\drefusagereport

[usagereport]

[refall]

With the usagereport package option enabled, \drefusagereport generates a
usagereport of all referenced keys. The usage report groups the keys by the help
texts. If the refall package option is given, all keys are marked as referenced.

Datagraphy

Page Value
/control group/mice race 3, 9 Black Six
The mice race used for experiments heavily influences the outcome of the results

Page Value
/med A/recovered 1, 3, 5, 8 20
/control group/dead after 24h 8 4
/control group/dead after 48h 8 7
/control group/recovered 8 21
/med A/dead after 24h 8 6
/med A/dead after 48h 8 12
Of all infected mice, a certain number died within a specified period of time.
A certain recovered from the infection. The dead categories are cumulative and
include all dead mice before.

Keys without Description Page Value
/control group/mice count 1, 3, 8, 9 32
/med A/mice count 1, 3, 5 32

2In doubt use Acrobat

9

\drefcalc[annotate=pdfcomment]{100/3}

Keys without Description Page Value
/foo 3 32
/bar 3 32
blah 4 undefined
/duration 5 5555ms
/power 5 1234 J
For these keys, no description was given

10

	Introduction
	Usage (or */control group/mice count mice)
	Design Principles
	Setting Datapoints
	Referencing Datapoints
	Calculations and Math Tools
	Units and Unit Scaling
	Relating Datapoints
	Helper Utilities
	Datagraphy

