verbatimtab

\verbatimtabinput

The moreverb package®

Robin Fairbairns (rf10ecan.ac.uk)
after
Angus Duggan, Rainer Schopf and Victor Eijkhout

2011-04-18

Contents

1 This package 1
1.1 Tabexpansion 1
1.2 Linenumbering e 2
1.3 Miscellanea e 2

2 The code of the package 2
2.1 Imitialcode 3
2.2 Writingtoafile. o 3
2.3 Tab expansion e 3

1 This package

This package uses the facilities provide by the verbatim package in the BTEX 2¢
tools distribution to provide a number of things that were rejected as unnecessary
in the development of that package. (Nevertheless, the tab-expansion code in this
package responds to one of the FAQs of comp.text.tex)

The package provides things in three broad areas:

e Tab expansion and related stuff,
e Line numbering,
e Miscellaneous: writing verbatim to a file (for example, for later re-input),
and ‘boxed’ verbatim.
1.1 Tab expansion

The package enables you to specify the expected width of the tabulation, and also
allows input of files containing tabs.

\begin{verbatimtab} [(tab width)] reproduces its body verbatim, with the
tabs expanded to the given width (the default value is 8).

*This file has version number v2.3a, last revised 2008/06/03

\verbatimtabsize

listing

listingcont

listinginput

verbatimwrite

boxedverbatim

verbatimcmd

\verbatimtabinput [{tab width)]{(file name)} is a file input version of the
verbatimtab environment.

The size of the tabs is stored in \verbatimtabsize, and persists between uses
of the environments. (L.e., an optional argument to one of them applies to all
subsequent ones.)

To replace the value other than by use of an optional argument, you need to say:

\renewcommand\verbatimtabsize{(value)\relax}

There are no promises offered as to the performance if you omit the \relax!

1.2 Line numbering

Line numbering is often useful when reproducing code examples (useful, that is,
for those of us who don’t want to pretty-print such snippets).

\begin{listing} [(interval)1{(start line)} numbers the lines of its body. The
argument (start line) specifies the starting line number. The optional argument
(interval) specifies the number of lines between numbered lines: that is, every line
whose number = 0 (mod (interval)) will be numbered in the output. (In addi-
tion, line number 1 will always be numbered.) The default value of the (interval)
is 1 (i.e., every line will be numbered).

\begin{listingcont} continues from the place where the last listing left off.

The style in which the label is set can be altered, for either environment, by
re-defining \listinglabel. Both environments also expand tabs.

‘*’ versions of both the listing environments are provided; these do the usual
verbatimx thing of outputting spaces as ‘,’, but don’t expand tabs.

\listinginput [{interval)]{(start line)}{(filename)} is a file input version of
listing. There is no ‘*’ form.

1.3 Miscellanea

\begin{verbatimwrite}{(filename)} writes all text in its body to a file, the
name of which it is given as an argument.

\begin{boxedverbatim} puts the contents of a verbatim environment in a
framing box. If you try to do this in a naive way, you find that the verbatim lines
have all become the width of the page, so that the box is, more often than not, a
very poor fit to the text it surrounds.

The verbatimcmd environment was provided by the KTEX2.09 and early
I¥TEX 2¢ versions of this package. However, its capabilities are now provided
by alltt, which is defined by the alltt package, now part of the IATEX base dis-
tribution, and so verbatimcmd has been withdrawn.

2 The code of the package

verbatimwrite

\@xobeytab

\@vobeytabs

1 (xmoreverb)
2.1 Initial code

Load the verbatim package if it’s not already loaded.

2 \@ifundefined{verbatim@processline}{\RequirePackage{verbatim}}{}

2.2 Writing to a file

\begin{verbatimwrite}{(filename)} writes all text in its body to a file, the name
of which it is given as an argument. (This code was written by Rainer Schopf.)

Note that the code creates its own output stream at first use. (This is a
conservation measure; if the user never uses \begin{verbatimwrite}, no \write
stream is created. An actual problematic use case appeared on tex.sx...)

3 \def\verbatimwrite#1{%
\@ifundefined{verbatim@out}{\newwrite\verbatim@out}{}
\@bsphack

\immediate\openout \verbatim@out #1
\let\do\@makeother\dospecials

\catcode‘\~""M\active \catcode‘\~"I=12
\def\verbatim@processline{’,

10 \immediate\write\verbatim@out

11 {\the\verbatim@line}}/,

12 \verbatim@start}

© 0 N O Ot

13 \def\endverbatimwrite{)
14 \immediate\closeout\verbatim@out
15 \@esphack}

2.3 Tab expansion

We define a few auxiliary macros and counters for expanding tabs. They are used
by the listing and verbatimtab environments.

16 \newcount\tab@position \newcount\tab@size

\verbatimtabsize used to be a counter, but that seems to me overkill (BTEX
uses too many counters as it is...).

17 \def\verbatimtabsize{8\relax}

\@xobeytab puts enough spaces in to get us to the next nominal tab stop
18 \def\@xobeytab{’

19 \loop

20 \toks@\expandafter{\the\toks@\@xobeysp}’
21 \advance\tab@position-1

22 \ifnum\tab@position>0 \repeat

23 }

\@vobeytabs initialises use of \@xobeytab. Needs to be executed within a group,
as mustn’t be allowed to leak out into the wide world.

24 \begingroup

25 \catcode‘\""I=\active

26 \gdef\@vobeytabs{\catcode‘\""I\active\let”~"I\@xobeytabl}

27 \endgroup

\verbatim@tabexpand

listing

listingcont

\listing@line

\listing@step

\verbatim@tabexpand(body of line)\@nil processes every character of a line by
tail recursion, counting the characters and juggling things when a tab is encoun-
tered. (What used to be called ‘line imaging’. . .)

28 \def\verbatim@tabexpand#1{%

29 \ifx#1\@nil
30 % \showthe\toks@

31 \the\toks@

32 \expandafter\par
33 \else

34 \ifx#1\@xobeytab
35 \@xobeytab

36 \else

We can safely put \@xobeysp into the token register, since it does precisely
what we need

37 \toks@\expandafter{\the\toks@#1}}

38 \advance\tab@position\m@ne

39 \fi

40 \ifnum\tab@position=0 \tab@position\tab@size \fi
41 \expandafter\verbatim@tabexpand

42 \fi

43 }

\begin{listing} [(interval)]{(start line)}

Defines a verbatim environment with numbered lines; the optional argument
(interval) specifies the number of lines between numbered lines, and the argument
(start line) specifies the starting line.

\begin{listingcont}

Continues from the place where listing left off. The style in which the label is
set can be altered by re-defining \listinglabel.

‘x’ versions of both environments are provided.

\listing@line holds the current line number; its default value is 1, so one can
merrily use listingcont throughout a document if there’s but one stream of
verbatim text being written.

44 \newcount\listing@line \listing@line=1

\listing@step is another case where a counter used to be used, to no very obvious
utility, but using up a valuable count register. Again, the value is modal; the
trailing \relax is necessary.

45 \def\listing@step{1l\relax}

Adding an \hbox in front of the line causes a line break, so I' go through this
rigmarole to get the lines aligned nicely. I probably missed some obvious reason
why \hboxes don’t work?.

46 \def\listinglabel#1{\1lap{\small\rmfamily\the#1}\hskip\listingoffset\relax}
47 \def\thelisting@line{’,

1The personal pronoun was present in the comments in the original version of this package;
I’m not sure who it relates to — RF

2It’s because an \hbox in vertical mode makes a complete paragraph in its own right; this
problem could be dealt with in the fullness of time, but just now. ..

\listingoffset

listinginput

48 \setboxO\hbox{\listinglabel\listing@linel}Y

49 \@tempcnta=\listing@line

50 \divide\@tempcnta\listing@step \multiply\@tempcnta\listing@step
51 \ifnum\listing@line=\@ne

52 \unhbox0

53 \else

54 \ifnum\@tempcnta=\1listing@line
55 \unhbox0

56 \else

57 \hskip\wdO

58 \fi

59 \fi}

\listingoffset is the separation between the line number and the actual line
being listed; default value is 1.5em

60 \providecommand\listingoffset{l.5em}

Define \1listing simply to suck in parameters and then to use \listingcont

61 \newcommand\listing[2] [1]{%

62 \global\listing@line=#2\relax
63 \gdef\listing@step{#1\relax}
64 \listingcont}

\listingcont is the business end of the two environments.

65 \def\listingcont{%
66 \tab@size=\verbatimtabsize
67 \def\verbatim@processline{\tab@position\tab@size

68 \thelisting@line \globalladvance\listing@linel
69 \toks@{}/,
70 \expandafter\verbatim@tabexpand\the\verbatim@line\@nill}y,

71 \@verbatim\frenchspacing\@vobeyspaces\Q@vobeytabs\verbatim@start}
Nothing special at the end of the two environments.

72 \let\endlisting=\endtrivlist
73 \let\endlistingcont=\endtrivlist

Now the same rigmarole for the ‘*’ versions.

74 \expandafter\newcommand\csname listing*\endcsname[2][1]{/
75 \globall\listing@line=#2\relax

76 \gdef\listing@step{#1\relax}

77 \csname listingcont*\endcsname}

78 \@namedef{listingcont*}{%

79 \def\verbatim@processline{,

80 \thelisting@line \globalladvance\listing@linel

81 \the\verbatim@line\par}y,

82 \@verbatim\verbatim@start}

Nobbut a bit of hassle in the name definitions for the end of the environments

83 \expandafter\let\csname endlisting*\endcsname\endtrivlist
84 \expandafter\let\csname endlistingcont*\endcsname\endtrivlist

\listinginput [{interval)]{(start line)}{{filename)?} is a file input version of list-
ing.

verbatimcmd

boxedverbatim

85 \def\listinginput{/

86 \@ifnextchar[%]

87 {\@listinginput}y

88 {\@listinginput[1]}}

89 \begingroup

90 \catcode‘\"=\active \lccode‘\"=\""M \lccode‘\N=‘\N
91 \lowercase{\endgroup

92 \def\@listinginput [#1]#2#3{\begingroup

93 \global\listing@line=#2

94 \gdef\listing@step{#1\relax}

95 \tab@size=\verbatimtabsize

96 \def\verbatim@processline{\tab@position\tab@size
97 \thelisting@line \globalladvance\listing@linel
98 \toks@{}/,

99 \expandafter\verbatim@tabexpand\the\verbatim@line\@nill}y
100 \@verbatim\frenchspacing\@vobeyspaces\@vobeytabs
101 \def\verbatim@addtoline##1~{},

102 \verbatim@line\expandafter{\the\verbatim@line##1}}J,
103 \openin\verbatim@in@stream=#3

104 \ifeof\verbatim@in@stream

105 \PackageWarning{moreverb}{No file #3.}}

106 \else

107 \do@verbatimtabinput

108 \closein\verbatim@in@stream

109 \fi

110 \endtrivlist\endgroup

111 \@doendpe

112 Y

113 }

verbatimcmd was a verbatim environment with the exception of the escape and
grouping characters \, {, }. This is (err) exactly the specification of the alltt
environment, and that is in the alltt package that is now part of the base distri-
bution.

114 \def\verbatimcmd{’
115 \PackageError{moreverb}{The verbatimcmd environment is obsoletel}/

116 {Use alltt (from the LaTeX required package
117 alltt) in place of verbatimcmd},
118 }

119 \let\endverbatimcmd\relax

boxedverbatim puts the contents of a verbatim environment in a framing box.
(Written by Victor Eijkhout.)
Bug fixes:

e David Carlisle 1995-12-28, dealing with spacing issues (iirc)
e Moretn Hggholm 2008-06-01, positioning of frame in lists

First, redefine ‘processline’ to produce only a line as wide as the natural width
of the line

120 \def\boxedverbatim{}

121 \def\verbatim@processline{},

122 {\setbox0=\hbox{\the\verbatim@line}
123 \hsize=\wd0 \the\verbatim@line\par}}y,

verbatimtab

\do@verbatimtab

\verbatimtabinput

Now save the verbatim code in a box

124 \G@minipagetrue % DPC
125 \Q@tempswatrue % DPC
126 \@totalleftmargin\z@ % MH
127 \setboxO=\vbox\bgroup \verbatim
128 }

At the end of the environment, we (umm) simply have to stick the results into
a frame.
129 \def\endboxedverbatim{

130 \endverbatim
131 \unskip\setbox0=\lastbox % DPC

Now everything’s in the box, so we can close it...
132 \egroup
To change the code for centring, the next line needs a spot of hacking.

133 \fbox{\box0}},
134 }

\begin{verbatimtab} [(tab width)] is a verbatim environment which expands tab

characters; the optional argument specifies the distance between tab stops.
Executing \obeylines before looking for the optional argument prevents an

empty first line of the environment becoming a \par token (this bug was reported

by Werner Lemberg).

135 \newenvironment{verbatimtab}{\obeylines\@verbatimtab}{\endtrivlist}

Process the optional argument of the verbatimtab, now that we have protected
ourselves from the dreaded \par tokens
136 \newcommand\@verbatimtab[1] [\verbatimtabsize]{’
137 \do@verbatimtab{#1}{/,
138 \@verbatim\frenchspacing\@vobeyspaces\Qvobeytabs\verbatim@start}/,
139 }

Prepare a tabbing environment; #1 is the value of the tab size (generally, orig-
inally, an optional argument), #2 is the ‘startup commands’ to execute once an
appropriate definition of \verbatim@processline has been established:

140 \def\do@verbatimtab#1#2{},

141 \tab@size=#1

142 \def\verbatim@processline{\tab@position\tab@size
143 \toks@{}/

144 \expandafter\verbatim@tabexpand\the\verbatim@line\@nil}y,
145 #2,
146 }

\verbatimtabinput [{tab width)]{(file name)} is a file input version of the
verbatimtab environment.

We use the input stream acquired by the verbatim package; we did after all
require it to be loaded. (One has to admit that the name of that stream isn’t
actually part of the package’s defined interface, but on the other hand there’s no
particular likelihood that it will ever change.)

We didn’t (originally) use fancy features of \newcommand since the definition
was inside a group, and hence global. So ... ‘traditional’ code to provide a com-
mand with an optional argument (which may no longer be necessary):

\do@verbatimtabinput

147 \def\verbatimtabinput{%

148 \@ifnextchar[%]

149 {\@verbatimtabinput}y

150 {\@verbatimtabinput [\verbatimtabsize] }}

151 \begingroup

152 \catcode‘\"=\active \lccode‘\"=‘\""M \lccode‘\N=‘\N
153 \lowercase{\endgroup

154 \def\@verbatimtabinput [#1]#2{\begingroup

155 \do@verbatimtab{#1}{%

156 \@verbatim\frenchspacing\@vobeyspaces\@vobeytabs}/
157 \def\verbatim@addtoline##1~{%

158 \verbatim@line\expandafter{\the\verbatim@line##1}}/
159 \openin\verbatim@in@stream=#2

160 \ifeof\verbatim@in@stream

161 \PackageWarning{moreverb}{No file #2.}

162 \else

163 \@addtofilelist{#2}%

164 \do@verbatimtabinput

165 \closein\verbatim@in@stream

166 \fi

167 \endtrivlist\endgroup\@doendpel}

168 }

Written-out (tail recursion) loop for reading the file

169 \def\do@verbatimtabinput{
170 \read\verbatim@in@stream to \verbtab@line
171 \ifeof\verbatim@in@stream

172 \else

173 \expandafter\verbatim@addtoline\verbtab@line
174 \verbatim@processline

175 \verbatim@startline

176 \expandafter\do@verbatimtabinput

177 \fi

178 }

179 (/moreverb)

