
Version: 0.1.1.

The logictools Package
Miles Min Yin Cheang

May 20, 2025

Contents

1 Purpose of this package 2

2 The formallogic environment 3
2.1 Introduction . 3
2.2 Quantifier stacks . 4

2.2.1 Declaring quantifiers . 4
2.3 Typesetting features . 5

2.3.1 Customisation . 5
2.3.2 Other syntax . 6

3 The ‘oxford’ package option 8
3.1 Good looking ‘proof from φ to ψ’ . 8
3.2 Bits and Bobs . 9

4 Implementation 10
4.1 formallogic . 10
4.2 Everything else . 20

1

1 Purpose of this package

The star of the show here is the formallogic environment. Prior to the development of this
environment, spending way too much time fiddling around with spacing commands was a
familiar experience for every logician. Most of the spacing you need in a logical statement is
context sensitive, so only so much can be done through basic macros. Furthermore, using too
many macros destroys the readability of the code, and slows down writing to a crawl.

In an effort to change this, I wrote an environment that both speeds up writing formal logic
(by offering shorter syntax) and improves the output considerably. The details of how this
works will be presented in the upcoming sections. The default settings were made with LATEX’s
default math font in mind, with the intention that the user come up with a preset that matches
their preferences. The options can be changed on the fly, so more than one preset can be used
in different parts of the document.

Other than this, the option ‘oxford’ will load a few neat macros that might be of particular
interest to those studying logic at the University of Oxford; they provide shortcuts to notations
that are commonly used in the first-year courses. It is likely that this section of the package will
be updated with more content as I go through my degree.

2

2 The formallogic environment

2.1 Introduction

This interface, accessed through the environment named formallogic, or the command
\fmllgc{<content>}, helps to type formal logic in LATEX. Here is a demo1:

Code: Output: Default LATEX:
|forall, x ; exists, y| (Ryx) ∀x ∃y (Ryx) ∀x∃y(Ryx)

|f,x;e,y|(Ryx) ∀x ∃y (Ryx) ∀x∃y(Ryx)
((P \land Q) \liff R) LL P ∧Q M ↔ R M LLP ∧QM ↔ RM

((P \land Q) \liff R) ((P ∧Q) ↔ R) ((P ∧Q) ↔ R)

((P \land Q) \liff R) ((P ∧Q) ↔ R) ((P ∧Q) ↔ R)

The first and foremost difference that can be observed is the readability of the code. Certainly
where we wish to use L · · · M, the code for the default LATEX output looks like:

$\llparenthesis\llparenthesis P\land Q\rrparenthesis\liff R\rrparenthesis$

Which can be shortened with shortcut macros but is still essentially unreadable. The case is
arguably even worse for quantifiers, where we need to achieve nice spacing:

$\forall\:\! x\ \exists\, y \ \, (Ryx)$ (What a mess!)

→ ∀x ∃ y (Ryx)

vs. ∀x ∃y (Ryx) (from formallogic)

In the table, forall and exists reference direct copies of \forall and \exists. Logictools
declares these two quantifiers by default. They will inherit the ugly kerning present for these
symbols in LATEX’s default math font (see table row 1). Good math fonts will not have this bug,
and so fixing it will not be necessary in either default LATEX or in formallogic. For the above we
declared quantifiers2 f and e with better spacing than the LATEX default (as seen in row 2). The
resulting syntax is clearly superior to what can be achieved without this environment.

Note that there are various user-defined parameters controlling the typesetting (e.g. spacing,
kerning, parenthesis style); this is how the same code produces markedly different outputs.
Furthermore, the user can customise some of the syntax (e.g. the names of quantifiers). This
means that just a few lines of code suffice to set the style and syntax for an entire document.
The benefits of this approach over manual typesetting should be obvious.

1Zooming in is recommended.
2The next section covers quantifier declaration in detail

3

More useful syntactic shortcuts may be found in the other syntax section. The next section
covers quantifiers in more detail (primarily, quantifier syntax and declaration).

2.2 Quantifier stacks

Quantifier stacks are a concept introduced for typesetting logical quantifiers:

∀x ∃y ∀x1 ∃z ∈ R

| forall, x ; exists, y ; forall, x_1 ; exists, z\in\mathbb{R} |

Quantifier stacks are used by the formallogic environment. They are delimited by ‘|’. A
quantifier stack is made up of quantifiers, written in the form <label>,<argument>. The label
consists of some text that indicates which quantifier will be used, while the argument can be
any math mode code. These quantifiers are separated by ‘;’. The formallogic environment
processes these stacks, turning them into a fully typeset sequence of quantifiers.

Spacing on either side of the label and argument is trimmed, but spacing inside the label
is not. This means ‘for all’ is a distinct label from ‘forall’. Officially, only Latin alphabetical
characters are supported for labels; although, other characters will probably work as long as
they can be used in expl3 csnames.

2.2.1 Declaring quantifiers

A declared quantifier has the following form:

...
<left padding>

<command>
<right padding>

...

e.g.
10mu

∃!
5mu
x

Syntax for quantifier declaration:

\DeclareQuantifier{<label>}{<command>}[<left pad>][<right pad>]

This command globally declares (or redeclares) a quantifier with the associated properties.
The label consists of some text that refers to this quantifier; the command should be a LaTeX com-
mand providing the quantifier symbol; left and right padding are optional padding values on ei-
ther side of the command. For instance: \DeclareQuantifier{ex!}{\exists !}[5mu][1.5mu]

provides a quantifier that can be used like: |ex!,x;forall,y| → ∃!x ∀y . . .

\LDeclareQuantifier{<label>}{<command>}[<left pad>][<right pad>]

4

This command does the same thing, but locally. With this, one can quickly redefine a
quantifier in the middle of an environment, and not worry about the changes carrying over to
the rest of the document.

! Local definitions overwrite any global definitions until their group is closed. Thus, if one writes:

1 \begingroup

2 \LDeclareQuantifier{ex}{\exists}[1mu][1mu]

3 \begin{formallogic}

4 \DeclareQuantifier{ex}{\forall}

5 |ex,x|(Px)

6 \end{formallogic}

7 \endgroup |

8 \fmllgc{|ex,x|(Px)}

The output is: ∃x (Px) | ∀x (Px), since the global \DeclareQuantifier{ex}{\forall}
does not come into effect until after the group is closed. As a word of warning, this means
that using \LDeclareQuantifier at the top level will make the declared quantifier immune to
change by \DeclareQuantifier for the rest of the document, as the group never closes.

2.3 Typesetting features

2.3.1 Customisation

The formallogic environment offers many customisation options through user-adjustable keys.
They may be changed with the command \logictoolsoptions{<key>=<value>, ... } (in
either the document or the preamble). A list of key-value pairs may also be given in an optional
argument to the formallogic environment or command. The following keys are available:

5

Key Description Accepts Default

partype Determines the type of parenthesis used,
single ‘(...)’ or double ‘L ... M’.

single,

double

single

parinnerpad Extra space inserted between parentheses
and their content.

mu 0.9mu

parstackkern Kern applied to stacked parentheses. mu -0.9mu

italiccorrection Extra kern between closing parentheses and
their content, to offset italic math font.

mu 1.12mu

parvoffset Amount to raise parentheses by; helps
center them on text in some fonts.

ex 0.2ex

quantskip Default skip inserted between quantifiers. mu 4.32mu

lastquantskip Default skip inserted after last quantifier. mu 4.32mu

scriptspace Determines space after sub/superscript,
same as the LATEX primitive.

em -0.025em

2.3.2 Other syntax

• Parentheses written consecutively (without spaces) will become parenthesis stacks, and
use parstackkern instead of parinnerpad as spacing.

• [<arg 1>/<arg 2>] → [<1>/<2>], allowing one to write easy variable substitutions inline3.
This uses the package xfrac, so fraction appearance is changed through that interface4.

• .= → .
=, providing quick access to \doteq.

! One can use "<content>" within the environment to escape <content>, preventing it from
being parsed by the environment; this is useful when one wishes to use a character that is active
in the syntax of the environment. The delimiter used here is the double quote, " (U+0022).

3Note that this means ‘[’ is by default active in the syntax, and so requires escaping if one wishes to use it without
following it with ‘/’ and then ‘]’.

4xfrac likes to generate warnings about font size substitutions with some fonts; loading a package like anyfontsize
should fix this.

6

For example, this can be used to write a function with single parentheses in a double
parenthesis environment, or a list using commas inside of a quantifier stack5:

1 \logictoolsoptions{partype=double, parinnerpad=3.5mu}

2 \begin{formallogic}

3 |forall,"x_1,x_2,x_3,\ldots";exists,y|(f"(y)"=x_1+x_2+x_3+\ldots\land Py)

4 \end{formallogic}

Produces: ∀x1, x2, x3, . . . ∃y Lf(y) = x1+ x2+ x3+ . . . ∧ Py M

5To be exact, ‘,’ and ‘;’ only need escaping when inside of a quantifier stack, delimited by ‘|’.

7

3 The ‘oxford’ package option

This package option adds a few macros for common notations at University of Oxford.

3.1 Good looking ‘proof from φ to ψ’

‘A proof π from φ to ψ’ (perhaps with some discharged assumptions) might be notated like this:

1 \begin{prooftree}

2 \alwaysNoLine

3 \AxiomC{\fbox{π}}

4 \UnaryInfC{\vdots}

5 \UnaryInfC{ψ}

6 \AxiomC{\fbox{π}$^{[\varphi]}$}

7 \UnaryInfC{\vdots}

8 \UnaryInfC{ϕ}

9 \alwaysSingleLine

10 \andlabel{Intro}6

11 \BinaryInfC{$\psi \land \phi$}

12 \end{prooftree}

π

...
ψ

π [φ]

...
ϕ

(∧ Intro)
ψ ∧ ϕ

The output is not ideal; introducing discharged assumptions puts the box off center in an
annoying way, and the \vdots are not aligned correctly. The following command achieves
better output7 with nicer syntax:

\prooffrom{<1>} <2> {<3>}

<2> = Either ‘^’ (for superscript), ‘_’ (for subscript), or nothing (for centered script).
followed by. . .

Some content delimited by [· · ·] (for square-bracketed content) or < · · · >
(for non-square-bracketed content).

E.g. \prooffrom{π}{ψ}, \prooffrom{π_1}^[φ]{ϕ} give:

π
...
ψ

π1 [φ]

...
ϕ

(∧ Intro)
ψ ∧ ϕ

6The macro \andlabel{#1} gives \RightLabel{\scriptsize(\land\hspace{1px}#1)}.
7Note, if one loads something that redefines \vdots, its vertical spacing might get ugly (as of logictools v0.1.1).

8

3.2 Bits and Bobs

\difmost{<variable>}[Math mode only.]

Gives the variable assignment notation: α v∼ β, meaning ‘β differs from α in at most v’.

\lcma

Gives◦, the ‘logical comma’ that Professor Beau Mount uses in the PTLP lecture notes.

\semval{<sent.>}{<structure>}[<var.assign.>]

Gives |<sent.>|αA, the semantic value of some sentence over model A with variable assignment
α. The input <structure> is converted to \mathcal{...}. If the input <var.assign.> is a
single latin letter (e.g. ‘a’, ‘b’, ‘d’ ‘g’), it is converted into an appropriate greek one8.

\lsym{<language>}[<signature>]9

Gives L◦, where ◦ can be 1,2,= or something else. Also optionally allows the addition of a
superscript, for a signature. The ‘=’ uses \@ltoolsshorteq, ‘=’, which is prettier in most fonts.

8This respects capitalisation, so one gets γ from ‘g’, and Γ from ‘G’. The command used is \latinletterstogreek.
9This command loads even without the package option ‘oxford’. Why? Because I couldn’t get it to work otherwise.

9

4 Implementation

4.1 formallogic

First, we save the original meaning of each symbol used in the syntax to its own csname.
We do this on startup instead of at the beginning of every environment because it saves on
performance, and 99% of the time it won’t matter. This does mean that if some other package
messes with the definition of these symbols, logictools will not notice; the user can fix this if
they so wish by updating the definition of __formal_original_X: manually.

1 % Thanks to everyone at TeX-exchange for teaching me how to use expl3!

2 \ExplSyntaxOn

3 \exp_args:Nc \mathchardef { __formal_original_): }=\char_value_mathcode:n {‘)}

4 \exp_args:Nc \mathchardef { __formal_original_(: }=\char_value_mathcode:n {‘(}

5 \exp_args:Nc \mathchardef { __formal_original_|: }=\char_value_mathcode:n {‘|}

6 \exp_args:Nc \mathchardef { __formal_original_;: }=\char_value_mathcode:n {‘;}

7 \exp_args:Nc \mathchardef { __formal_original_.: }=\char_value_mathcode:n {‘.}

8 \exp_args:Nc \mathchardef { __formal_original_[: }=\char_value_mathcode:n {‘[}

Then we initialise some error message variables, and token lists for our parentheses:

9 \msg_new:nnnn { logictools } { quantnoglobaldeferror }{}{}

10 % msg if global def for a quantifier went missing

11 \msg_new:nnnn { logictools } { quantneverdeferror }{}{}

12 % msg if quant is never defined at all

13 \tl_new:N \l__formal_rparchar_tl % the right parenthesis used in formallogic

14 \tl_new:N \l__formal_lparchar_tl % the left parenthesis used in formallogic

Now we define all the keys for customisation, and initialise them:

16 \keys_define:nn {formal/options}

17 {

· · ·
50 }

51 \keys_set:nn {formal/options}

52 {

53 parstackkern,

54 parinnerpad,

10

55 italiccorrection,

56 parvoffset,

57 quantskip,

58 lastquantskip,

59 partype,

60 scriptspace,

61 }

Now we set up some booleans:

62 \bool_new:N \l__formal_rparpadreq_bool

63 \bool_set_true:N \l__formal_rparpadreq_bool

64 \bool_new:N \l__formal_escaped_bool

65 \bool_set_false:N \l__formal_escaped_bool

\l__formal_rparpadreq_bool will tell us when a right parenthesis ‘)’ needs extra padding
(i.e. when it surrounds content); meanwhile, \l__formal_escaped_bool can be queried to
tell us if we are between two quotation marks.
Next, we define commands that will be used for the left and right parentheses:

66 \box_new:N \l__formal_lpar_box % the box for parentheses

67 \box_new:N \l__formal_rpar_box

68

69 \cs_new_protected:Nn __formal_llpar_char:

70 {

71 \bool_if:NTF \l__formal_escaped_bool

72 {\use:c {__formal_original_(:}}

73 {

74 \box_use:N \l__formal_lpar_box

75 \peek_charcode:NF ({\mskip \l__formal_parinnerpad_muskip}

76 }

77 }

78

79 \cs_new_protected:Nn __formal_rrpar_char:

80 {

81 \bool_if:NTF \l__formal_escaped_bool

82 {\use:c {__formal_original_):}}

11

83 {

84 \bool_if:NTF \l__formal_rparpadreq_bool

85 {\mskip \l__formal_parinnerpad_muskip

86 \mkern \l__formal_italiccorrection_muskip}

87 {}

88

89 \box_use:N \l__formal_rpar_box

90 \peek_charcode:NTF)

91 {\bool_set_false:N \l__formal_rparpadreq_bool}

92 {\bool_set_true:N \l__formal_rparpadreq_bool}

93 }

94 }

First, we use boxes here to take arbitrary typeset content. Eventually, we will be setting these
to the correct parenthesis commands, with any extra spacing commands. Using boxes lets us
skip executing these commands over and over, which saves some performance.

First, we check if we are currently escaped: if we are, we return the original parenthesis; if
we aren’t, we use the formallogic definition.

For the left parenthesis, we peek at the next character to see if it is another left parenthesis.
If it isn’t, we will put in parinnerpad. For the right parenthesis, the logic is slightly more
complex. We check the current value of rparpadreq, and if it is true, we insert parinnerpad and
italiccorrection. Then, we look at the next character; if this is another right parenthesis, we
set rparpadreq to false; if it is something else then we set it to true. The effect is that extra
padding will not be inserted if the prior character was also a right parenthesis. To round off
this section on parenthesis padding, note that the formallogic will check if the first character
in its input is a right parenthesis, and set rparpadreq to false in this case. This means that
\fmllgc{(}Px\fmllgc{)} gives LPxM, while \fmllgc{(}Px\fmllgc{)} gives LPx M10.

Here we define the command for ":

95 \cs_new_protected:Nn __formal_escapetoggle:

96 {

97 \bool_set_inverse:N \l__formal_escaped_bool

98 }

10This makes spacing behaviour consistent: spacing is inserted if and only if a character other than ‘)’ precedes.

12

This next section of code implements quantifier stacks. It is quite complicated and involves
a lot of trickery with math-active characters and weird arguments. The reason for this approach
is that it is very performant compared to alternatives (e.g. l3regex, sequence splitting):

99 \cs_new_protected:Nn __formal_quantstackenter:

100 {

101 \bool_if:NTF \l__formal_escaped_bool

102 {\use:c {__formal_original_|:}}

103 {

104 \begingroup

105 \char_set_active_eq:nN { ‘| } __formal_quantstackesc:

106 \char_set_active_eq:nN { ‘; } __formal_quantdivider:

107 \char_set_mathcode:nn { ‘; } { "8000 }

108 __formal_headquant:w

109 }

110 }

This will be assigned to ‘|’. As always, if escaped nothing happens. If not escaped, it:

1. Begins a new group.

2. Sets the next occurrence of ‘|’ to escape the quantifier stack instead of enter it.

3. Sets ‘;’ to its active role as the divider between quantifiers.

4. Calls the command that parses the leading quantifier (headquant).

Headquant does the following:

111 \cs_new_protected:Npn __formal_headquant:w #1,

112 {

113 \tl_trim_spaces_apply:nN {#1} __formal_headbox:n

114 }

Here we are using the ‘weird’ argument specification to eat the comma as part of the argument.
As such, this command takes this section of the input: |<=#1=>, ...| and discards the comma
from the input stream. It then trims any spaces on either side of this input and passes the result
to the ‘headbox’ command, defined as follows:

115 \cs_new_protected:Npn __formal_headbox:n #1

116 {

13

117 \box_if_exist:cTF {l__formal_#1head_box}

118 {

119 \box_if_empty:cTF {l__formal_#1head_box}

120 {

121 \box_if_exist:cTF {g__formal_#1head_box}

122 {\box_use:c{g__formal_#1head_box}}

123 {

124 \msg_set:nnnn { logictools } { quantnoglobaldeferror }

125 {Quantifier~’#1’~not~defined~\msg_line_context:.}

126 {You~are~attempting~to~use~a~locally~declared~quantifier

127 ~outside~of~its~group.~Either~define~it~globally~with

128 ~DeclareQuantifier,~or~define~it~locally~here~too.

129 \\ \msg_see_documentation_text:n {logictools}}

130 \msg_error:nn {logictools} {quantnoglobaldeferror}

131 }

132 }

133 {

134 \box_use:c{l__formal_#1head_box}

135 }

136 }

137 {

138 \msg_set:nnnn { logictools } { quantneverdeferror }

139 {Quantifier~’#1’~used~but~never~defined.}

140 {You~must~declare~quantifiers~with~the~command(s)

141 ~(L)DeclareQuantifier~before~using~them.

142 \\ \msg_see_documentation_text:n {logictools}}

143 \msg_error:nn {logictools} {quantneverdeferror}

144 }

145 }

This code takes the output from headquant and tries to find a matching declared quantifier.
When quantifiers are declared, they are given associated local and global ‘headboxes’ and
‘bodyboxes’ (more on this later). Here we try to find headboxes associated with <label>,
which will be called \(g,l)__formal_<label>head_box. A local box should always exist if
the quantifier was declared somewhere (as both LDeclare and Declare commands instantiate
this), so we first check if this one does. Then, we check if it has content. If it is empty, we

14

revert back to the global definition of the quantifier (which hopefully exists); however, if it is
non-empty, then we take the local definition over the global one. Finally, rather than throwing
cryptic errors, we send out custom error messages if our existence checks fail.

All user input after the comma is processed as normal, forming the variable for the quantifier.
We simply wait for ‘;’, which tells us that a new quantifier is coming.

On receiving this token, we do the same thing, but with bodyboxes:

146 \cs_new_protected:Npn __formal_quantdivider:

147 {

148 \bool_if:NTF \l__formal_escaped_bool

149 {\use:c {__formal_original_;:}}

150 {__formal_bodyquant:w}

151 }

152

153 \cs_new_protected:Npn __formal_bodyquant:w #1,

154 {

155 \mskip \use:c{l__formal_quantskip_muskip} \tl_trim_spaces_apply:nN {#1} __formal_bodybox:n

156 }

157

158 \cs_new_protected:Npn __formal_bodybox:n #1

159 {

Same as above but with every occurrence of ‘head’ replaced with ‘body’.
180 }

The only significant change here is that we now insert quantskip before each quantifier. Also,
bodyboxes include left padding values from the declared quantifier, which headboxes do not.
In retrospect, there is probably a nicer way to accomplish the same behaviour. Too bad!

Finally, the next occurrence of ‘|’ ends the group and inserts lastquantskip:

181 \cs_new_protected:Nn __formal_quantstackesc:

182 {

183 \endgroup \mskip \use:c{l__formal_lastquantskip_muskip}

184 }

By ending the group, we chuck out the active definition of ‘;’ and the definition of ‘|’ as

15

quantstackesc. Thus, the next occurrence of ‘|’ enters a new quantstack.

We follow up with some more active definitions:

185 \cs_new_protected:Nn __formal_dot:

186 {

187 \bool_if:NTF \l__formal_escaped_bool

188 {\use:c {__formal_original_.:}}

189 {\peek_charcode_remove:NTF =

190 {\doteq}

191 {\use:c {__formal_original_.:}}}

192 }

193

194 \cs_new_protected:Nn __formal_lbrack:

195 {

196 \bool_if:NTF \l__formal_escaped_bool

197 {\use:c {__formal_original_[:}}

198 {__formal_varsub:w}

199 }

200

201 \cs_new_protected:Npn __formal_varsub:w #1/#2]

202 {

203 \left["\sfrac{"#1"}{"#2"}"\right]

204 }

The definition for ‘.’ just checks if there is an equals sign afterwards, and prints .= if there is.
The definition for ‘[’ calls the command __formal_varsub:w. This command uses the weird
argument type to grab any input of the form [<stuff>/<more>]. It then converts this into a
nice looking fraction using the xfrac package. Unfortunately, for some reason the definition
of \sfrac makes syntactic use of the parentheses characters ‘(’ and ‘)’ (i.e. it cares that they
have been redefined), and so the command must be escaped. However, the inputs need not be
escaped, so we unescape them. This issue is something that should be looked out for when
coding in this environment, though it is quite rare.

16

Now we get on to the formallogic environment itself:

205 \NewDocumentEnvironment{formallogic}{O{}}

206 {

207 \setlength{\parindent}{0pt}

208 \cs_set:Npn \par {\newline}

This makes \par work in math mode, so we can get a new line by hitting return twice.

209 \keys_set:nn {formal/options}

210 {

211 #1,

212 }

213 \setlength\scriptspace{\l__formal_scriptspace_dim}

Set any key-value pairs given as an optional argument, and then set scriptspace to the value
specified by the user. We do this in the environment so the assignment is local.

214 \hbox_set:Nn \l__formal_lpar_box

215 {

216 \raisebox{\l__formal_parvoffset_dim}

217 {$\l__formal_lparchar_tl \mkern \l__formal_parstackkern_muskip$}

218 }

219

220 \hbox_set:Nn \l__formal_rpar_box

221 {

222 \raisebox{\l__formal_parvoffset_dim}

223 {$\mkern \l__formal_parstackkern_muskip \l__formal_rparchar_tl$}

224 }

Sets the parenthesis boxes: We take the associated character token (declared by the partype
key), raise it by parvoffset, and insert parstackkern on the correct side.

225 \char_set_active_eq:nN { ‘(} __formal_llpar_char:

226 \char_set_mathcode:nn { ‘(} { "8000 }

227 \char_set_active_eq:nN { ‘) } __formal_rrpar_char:

228 \char_set_mathcode:nn { ‘) } { "8000 }

229 \char_set_active_eq:nN { ‘" } __formal_escapetoggle:

230 \char_set_mathcode:nn { ‘" } { "8000 }

17

231 \char_set_active_eq:nN { ‘| } __formal_quantstackenter:

232 \char_set_mathcode:nn { ‘| } { "8000 }

233 \char_set_active_eq:nN { ‘. } __formal_dot:

234 \char_set_mathcode:nn { ‘. } { "8000 }

235 \char_set_active_eq:nN { ‘[} __formal_lbrack:

236 \char_set_mathcode:nn { ‘[} { "8000 }

Makes all the characters used in the syntax math-active and sets their definitions.

237 \(

238 \peek_charcode:NTF)

239 {\bool_set_false:N \l__formal_rparpadreq_bool}

240 {\bool_set_true:N \l__formal_rparpadreq_bool}

241 }

242 {\)}

Begins math-mode and sets rparpadreq based on if the next character is a ‘)’. At the end, we
come out of math-mode.

The rest of the code is quite self-explanatory. The only thing worth noting is that DeclareQuan-
tifier sets global variants of head and body boxes, while LDeclareQuantifier only sets local ones.
This means that it is possible to locally declare a quantifier and have its definition fall out of
scope by ending the group it was declared in. This will result in an empty local box, and a
non-existent global box (it is also the only way for this configuration to happen); a custom error
message explains this to the user if it occurs.

243 \NewDocumentCommand{\DeclareQuantifier}{m m O{0mu} O{0mu}}

244 {

245 \box_if_exist:cF {g__formal_#1head_box}

246 {

247 \box_new:c {g__formal_#1head_box}

248 \box_new:c {g__formal_#1body_box}

249 }

250 \box_if_exist:cF {l__formal_#1head_box}

251 {

252 \box_new:c {l__formal_#1head_box}

253 \box_new:c {l__formal_#1body_box}

18

254 }

255 \hbox_gset:cn {g__formal_#1head_box}

256 {

257 $#2 \mkern#4$

258 }

259 \hbox_gset:cn {g__formal_#1body_box}

260 {

261 $\mskip#3 #2 \mkern#4$

262 }

263 }

264 \NewDocumentCommand{\LDeclareQuantifier}{m m O{0mu} O{0mu}}

265 {

266 \box_if_exist:cF {l__formal_#1head_box}

267 {

268 \box_new:c {l__formal_#1head_box}

269 \box_new:c {l__formal_#1body_box}

270 }

271 \hbox_set:cn {l__formal_#1head_box}

272 {

273 $#2 \mkern#4$

274 }

275 \hbox_set:cn {l__formal_#1body_box}

276 {

277 $\mskip#3 #2 \mkern#4$

278 }

279 }

280

281 % Use this command to declare settings that

282 will stay for the rest of the document!

283 \NewDocumentCommand \logictoolsoptions { m }

284 {

285 \keys_set:nn {formal/options}

286 {

287 #1

288 }

19

289 }

290

291 % Command that puts things inside the formallogic environment,

292 can be used inline.

293 \NewDocumentCommand \fmllgc {o m}

294 {

295 \text{\begin{formallogic}[#1]#2

296 \end{formallogic}}

297 }

4.2 Everything else

NOTES FOR OTHER FUNCTIONALITY PENDING
It is worth pointing out these two things that happen right before the package finishes loading:

1 \DeclareQuantifier{exists}{\exists}

2 \DeclareQuantifier{forall}{\forall}

3

4 % Fix for amsmath messing with math-active codes.

5 \edef\originalbmathcode{%

6 \noexpand\mathchardef\noexpand\@tempa\the\mathcode‘\(\relax}

7 \def\resetMathstrut@{%

8 \setbox\z@\hbox{%

9 \originalbmathcode

10 \def\@tempb##1"##2##3{\the\textfont"##3\char"}%

11 \expandafter\@tempb\meaning\@tempa \relax

12 }%

13 \ht\Mathstrutbox@\ht\z@ \dp\Mathstrutbox@\dp\z@

14 }

The first is a declaration of quantifiers ‘exists’ and ‘forall’ as defaults. The final piece of code
prevents a slew of errors caused by amsmath interacting with active mathcodes. I do not
understand it in the slightest; I think it comes from David Carlisle.

20

	Purpose of this package
	The formallogic environment
	Introduction
	Quantifier stacks
	Declaring quantifiers

	Typesetting features
	Customisation
	Other syntax

	The `oxford' package option
	Good looking `proof from to '
	Bits and Bobs

	Implementation
	formallogic
	Everything else

