
The syntax∗ package

Mark Wooding

17 May 1996

Contents
1 User guide 2

1.1 Introduction 2
1.2 The abbreviated verba-

tim notation 2
1.3 Typesetting syntactic items 3
1.4 Abbreviated forms for

syntactic items 3
1.5 The grammar environment 5
1.6 Syntax diagrams 6

1.6.1 Line breaking in
syntax diagrams . 8

1.6.2 Customising syn-
tax diagrams . . . 9

1.7 Changing the presenta-
tion styles 10

2 Change history 10

3 Implementation of syntax 11
3.1 Options handling 11
3.2 Special character handling 12
3.3 Underscore handling . . . 13
3.4 Abbreviated verbatim

notation 14
3.5 Style hooks for syntax

forms 15
3.6 Simple syntax typesetting 16

3.6.1 The shortcuts . . . 16
3.7 Syntax diagrams 22

3.7.1 User-configurable
parameters 22

3.7.2 Other declarations 23
3.7.3 Arrow-drawing . . 24
3.7.4 Drawing curves . . 24
3.7.5 Drawing rules . . . 26
3.7.6 The syntdiag en-

vironment 27
3.7.7 Putting things in

the right place . . 30
3.7.8 Typesetting syn-

tactic items 31
3.7.9 Inserting other

pieces of text . . . 31
3.7.10 The stack envi-

ronment 32
3.7.11 The rep environ-

ment 35
3.8 The end 38

A The GNU General Public
Licence 38
A.1 Preamble 38
A.2 Terms and conditions for

copying, distribution and
modification 39

A.3 Appendix: How to Ap-
ply These Terms to Your
New Programs 43

∗The syntax package is currently at version 1.07, dated 17 May 1996.

1

1 User guide

1.1 Introduction
The syntax package provides a number of commands and environments which
extend LATEX and allow you to typeset good expositions of syntax.

The package provides several different types of features: probably not all of
these will be required by every document which needs the package:

• A system of abbreviated forms for typesetting syntactic items.

• An environment for typesetting BNF-type grammars

• A collection of environments for building syntax diagrams.

The package also includes some other features which, while not necessarily
syntax-related, will probably come in handy for similar types of document:

• An abbreviated notation for verbatim text, similar to the shortvrb package.

• A slightly different underscore character, which works as expected in text
and maths modes.

1.2 The abbreviated verbatim notation
In documents describing programming languages and libraries, it can become te-
dious to type \verb|...| every time. Like Frank Mittelbach’s shortvrb package,
syntax provides a way of setting up single-character abbreviations. The only real
difference between the two is that the declarations provided by syntax obey LATEX’s
normal scoping rules.

You can set up a character as a ‘verbatim shorthand’ character using the\shortverb
\shortverb command. This takes a single argument, which should be a single-
character control sequence containing the character you want to use. So, for
example, the command

\shortverb{\|}

would set up the ‘|’ character to act as a verbatim delimiter. While a \shortverb
declaration is in force, any text surrounded by (in this case) vertical bar characters
will be typeset as if using the normal \verb command.

Since LATEX allows any declaration to be used as an environment, you can useshortverb
a shortverb environment to delimit the text over which your character is active:

Some text...
\begin{shortverb}{\|}
...
\end{shortverb}

If you want to disable a \shortverb character without ending the scope of\unverb
other declarations, you can use the \unverb command, passing it a character as
a control sequence, in the same way as above.

The default TEX/LATEX underscore character is rather too short for use in
identifiers. For example:

2

Old-style underscores

Typing long underscore-filled
names, like big function name, is
normally tedious. The normal
positioning of the underscore is
wrong, too.

Typing long underscore-filled
names, like big_function_name,
is normally tedious. The normal
positioning of the underscore
is wrong, too.

The syntax package redefines the _ command to draw a more attractive un-
derscore character. It also allows you to use the _ character directly to produce
an underscore outside of maths mode: _ behaves as a subscript character as usual
inside maths mode.

New syntax underscores

You can use underscore-filled
names, like big_function_name,
simply and naturally. Of course,
subscripts still work normally in
maths mode, e.g., xi.

You can use underscore-filled
names, like big_function_name,
simply and naturally. Of
course, subscripts still work
normally in maths mode, e.g.,
x_i.

1.3 Typesetting syntactic items
The syntax package provides some simple commands for typesetting syntactic
items.

Typing \synt{〈text〉} typesets 〈text〉 as a ‘non-terminal’, in italics and sur-\synt
rounded by angle brackets. If you use \synt a lot, you can use the incantation

\def\<#1>{\synt{#1}}

to allow you to type \<〈text〉> as an alternative to \synt{〈text〉}.
You can also display literal text, which the reader should type directly, using\lit

the \lit command.
Use of \lit

Type ‘ls’ to display a list of files. Type \lit{ls} to display a
list of files.

Note that the literal text appears in quotes. To suppress the quotes, use the
‘*’ variant.

The \lit command produces slightly better output than \verb for running
text, since the spaces are somewhat narrower. However, \verb allows you to type
arbitrary characters, which are treated literally, whereas you must use commands
such as \{ to use special characters within the argument to \lit. Of course, you
can use \lit anywhere in the document: \verb mustn’t be used inside a command
argument.

1.4 Abbreviated forms for syntactic items
It would be very tedious to require the use of commands like \synt when building
syntax descriptions like BNF grammars. It would also make your LATEX source

3

hard to read. Therefore, syntax provides some abbreviated forms which make
typesetting syntax quicker and easier.

Since the abbreviated forms use several characters which you may want to
use in normal text, they aren’t enabled by default. They only work with special
commands and environments provided by the syntax package.

The abbreviated forms are shown in the table below:

Input Output
<some text> 〈some text〉
‘some text’ ‘some text’
"some text" some text

Within one of these abbreviated forms, text is treated more-or-less verbatim:

• Any $, %, ^, &, {, }, ~ or # characters are treated literally: their normal
special meanings are ignored.

• Other special characters, with the exception of \, are also treated literally:
this includes any characters made special by \shortverb.

However, the \ character retains its meaning. Since the brace characters are
not recognised, most commands can’t be used within abbreviated forms. However,
you can use special commands to type some of the remaining special characters:

Command Result
\\ A ‘\’ character
\> A ‘>’ character
\’ A ‘’’ character
\" A ‘"’ character
\␣ A ‘␣’ character (not a space)

Note that \\, \>, \" and \␣ are only useful in a \tt font, i.e., inside ‘...’
and "..." forms, since the characters don’t exist in normal fonts. The \>, \" and
\’ commands are only provided so you can use these characters within <...>,
"..." and ‘...’ forms respectively: in the other forms, there is no need to use
the special command.

In addition, when the above abbreviations are enabled, the character | is set to
typeset a | symbol, which is conventionally used to separate alternatives in syntax
descriptions.

Normally, these abbreviated forms are enabled only within special environ-\syntax
ments, such as grammar and syntdiag. To use them in running text, use the
\syntax command. The abbreviations are made active within the argument of
the \syntax command.1 Note that you cannot use the \syntax command within
the argument of another command.

You can also enable the syntax shortcuts using the \synshorts declaration or\synshorts
synshorts the synshorts environment. This enables the syntax shortcuts until the scope of

the declaration ends.
If syntax shortcuts are enabled, you can disable them using the \synshortsoff\synshortsoff

1The argument of the \syntax command may contain commands such as \verb, which are
normally not allowed within arguments.

4

declaration.

1.5 The grammar environment
For typesetting formal grammars, for example, of programming languages, thegrammar
syntax package provides a grammar environment. Within this environment, the
abbreviated forms described above are enabled.

Within the environment, separate production rules should be separated by
blank lines. You can use the normal \\ command to perform line-breaking of
a production rule. Note that a production rule must begin with a nonterminal
name enclosed in angle brackets (< . . . >), followed by whitespace, then some kind
of production operator (usually ‘::=’) and then some more whitespace. You can
control how this text is actually typeset, however.

You can use syntax diagrams (see below) instead of a straight piece of BNF by\[[
\]] enclosing it in a \[[. . . \]] pair. Note that you can’t mix syntax diagrams and

BNF in a production rule, and you will get something which looks very strange if
you try.

In addition, a command \alt is provided for splitting long production rules\alt
over several lines: the \alt command starts a new line and places a | character
slightly in the left margin. This is useful when a symbol has many alternative
productions.

The grammar environment

〈statement〉 ::= 〈ident〉 ‘=’ 〈expr〉
| ‘for’ 〈ident〉 ‘=’ 〈expr〉 ‘to’ 〈expr〉 ‘do’ 〈statement〉
| ‘{’ 〈stat-list〉 ‘}’
| 〈empty〉

〈stat-list〉 ::= 〈statement〉 ‘;’ 〈stat-list〉 | 〈statement〉

\begin{grammar}
<statement> ::= <ident> ‘=’ <expr>

\alt ‘for’ <ident> ‘=’ <expr> ‘to’ <expr> ‘do’ <statement>
\alt ‘{’ <stat-list> ‘}’
\alt <empty>

<stat-list> ::= <statement> ‘;’ <stat-list> | <statement>
\end{grammar}

You can modify the appearance of grammars using three length parameters:

\grammarparsep is the amount of space inserted between production rules. It is
a rubber length whose default value is 8 pt, with 1 pt of stretch and shrink.

\grammarindent is the amount by which the right hand side of a production rule
is indented from the left margin. It is a rigid length. Its default value is
2 em.

You can also control how the ‘label’ is typeset by redefining the \grammarlabel\grammarlabel

5

command. The command is given two arguments: the name of the nonterminal
(which was enclosed in angle brackets), and the ‘production operator’. The com-
mand is expected to produce the label. By default, it typesets the nonterminal
name using \synt and the operator at opposite ends of the label, separated by an
\hfill.

1.6 Syntax diagrams
A full formal BNF grammar can be somewhat overwhelming for less technical
readers. Documents aimed at such readers tend to display grammatical structures
as syntax diagrams.

A syntax diagram is always enclosed in a syntdiag environment. You shouldsyntdiag
think of the environment as enclosing a new sort of LATEX mode: trying to type
normal text into a syntax diagram will result in very ugly output. LATEX ignores
spaces and return characters while in syntax diagram mode.

The syntax of the environment is very simple:

〈synt-diag-env〉 ::=�� \begin{syntdiag} �

� [〈decls〉] �

� 〈text〉 �

� \end{syntdiag} ��

The 〈decls〉 contain any declarations you want to insert, to control the envi-
ronment. The parameters to tweak are described below.

Within a syntax diagram, you can include syntactic items using the abbreviated
forms described elsewhere. The output from these forms is modified slightly in
syntax diagram mode so that the diagram looks right.

I probably ought to point out now that the syntax diagram typesetting com-
mands produce beautiful-looking diagrams with all the rules and curves accurately
positioned. Some device drivers don’t position these objects correctly in their out-
put. I’ve had particular trouble with dvips. I’ll say it again: it’s not my fault!

The syntdiag environment only works in paragraph mode, and it acts rathersyntdiag*
like a paragraph, splitting over several lines when appropriate. If you just want
to typeset a snippet of a syntax diagram, you can use the starred environment
syntdiag∗.
〈synt-diag-star-env〉 ::=�� \begin{syntdiag*} �

� [〈decls〉] �

� �

� �

� [〈width〉] �

� 〈text〉 \end{syntdiag*} ��

When typesetting little demos like this, it’s not normal to fully adorn the
syntax diagram with the full double arrows (‘�� · · · ��’). The two declarations
\left{〈arrow〉} and \right{〈arrow〉} allow you to choose the arrows on each side
of the syntax diagram snippet. The possible values of 〈arrow〉 are shown in the
table-ette below:

»- �� >- � -> �
->< �� ... · · · -

These declarations should be used only in the optional argument to the
syntdiag∗ command. The second optional argument to the environment, if speci-
fied, fixes the width of the syntax diagram snippet; if you omit this argument, the
diagram is made just wide enough to fit everything in.

6

Example of syntdiag∗

Construction Meaning
�� · · · Start of syntax diagram
· · · �� End of syntax diagram

� · · · Continued on next line
· · · � Continued from previous line
· · · � 〈option-a〉

� 〈option-b〉 �

� 〈option-c〉 �

� · · ·
Alternatives: choose any one

· · ·
� 〈separator〉 �

� 〈repeat-me〉 � · · · One or more items, with separators

\newcommand{\bs}[2]{%
\begin{minipage}{1.6in}%
\begin{syntdiag*}[\left{#1}\right{#2}][1.6in]%

}
\newcommand{\es}{\end{syntdiag*}\end{minipage}}

\begin{center}
\begin{tabular}{cl} \\ \hline
\bf Construction & \bf Meaning \\ \hline
\bs {>>-} {...} \es & Start of syntax diagram \\
\bs {...} {-><} \es & End of syntax diagram \\
\bs {>-} {...} \es & Continued on next line \\
\bs {...} {->} \es & Continued from previous line \\ \hline
\bs {...} {...}

\begin{stack} <option-a> \\ <option-b> \\ <option-c> \end{stack}
\es & Alternatives: choose any one \\
\bs {...} {...}

\begin{rep} <repeat-me> \\ <separator> \end{rep}
\es & One or more items, with separators \\ \hline
\end{tabular}
\end{center}

7

You can also include text using the \tok command. The argument of this\tok
command is typeset in LATEX’s LR mode and inserted into the diagram. Syntax
abbreviations are allowed within the argument, so you can, for example, include
textual descriptions like

\tok{any <char> except ‘"’}

Within a syntax diagram, a choice between several different items is shown bystack
stacking the alternatives vertically. In LATEX, this is done by enclosing the items
in a stack environment. Each individual item is separated by \\ commands, as in
the array and tabular environments. Each row may contain any syntax diagram
material, including \tok commands and other stack environments.

Note if you end a stack environment with a \\ command, a blank row is added
to the bottom of the stack, indicating that none of the items need be specified.

Text which can be repeated is enclosed in a rep environment: the text isrep
displayed with a backwards pointing arrow drawn over it, showing that it may be
repeated. Optionally, you can specify text to be displayed in the arrow, separating
it from the main text with a \\ command.

Note that items on the backwards arrow of a rep construction should be dis-
played backwards. You must put the individual items in reverse order when build-
ing this part of your diagrams. syntax will correctly reverse the arrows on rep struc-
tures, but apart from this, you must cope on your own. You are recommended to
keep these parts of your diagrams as simple as possible to avoid confusing readers.

A syntax diagram

�� 〈ident〉 ‘(’
� ‘,’ �

� �

� 〈type〉 �

� 〈ident〉 �

� �

� ��

� ‘...’ �

� ‘)’ ��

\begin{syntdiag}
<ident> ‘(’

\begin{rep} \begin{stack} \\
<type> \begin{stack} \\ <ident> \end{stack}

\end{stack} \\ ‘,’ \end{rep}
\begin{stack} \\ ‘...’ \end{stack} ‘)’
\end{syntdiag}

1.6.1 Line breaking in syntax diagrams

Syntax diagrams are automatically broken over lines and across pages. Lines are
only broken between items on the outermost level of the diagram: i.e., not within
stack or rep environments.

You can force a line break at a particular place by using the \\ command
as usual. This supports all the usual LATEX features: a ‘*’ variant which pro-
hibits page breaking, and an optional argument specifying the extra vertical space
between lines.

8

1.6.2 Customising syntax diagrams

There are two basic styles of syntax diagrams supported:

square Lines in the syntax diagram join at squared-off corners. This appears to
be the standard way of displaying syntax diagrams in IBM manuals, and
most other documents I’ve seen.

rounded Lines curve around corners. Also, no arrows are drawn around repeating
loops: the curving of the lines provides this information instead. This style is
used in various texts on Pascal, and appears to be more popular in academic
circles.

You can specify the style you want to use for syntax diagrams by giving the
style name as an option on the \usepackage command. For example, to force
rounded edges to be used, you could say

\usepackage[rounded]{syntax}

The syntdiag environment takes an option argument, which should contain\sdsize
\sdlengths declarations which are obeyed while the environment is set up. The default value

of this argument is ‘\sdsize\sdlengths’. The \sdsize command sets the default
type size for the environment: this is normally \small. \sdlengths sets the values
of the length parameters used by the environment based on the current text size.
These parameters are described below.

For example, if you wanted to reduce the type size of the diagrams still further,
you could use the command

\begin{syntdiag}[\tiny\sdlengths]

The following length parameters may be altered:

\sdstartspace The length of the rule between the arrows which begin each line
of the syntax diagram and the first item on the line. Note that most objects
have some space on either side of them as well. This is a rubber length. Its
default value is 1 em, although it can shrink by up to 10 pt.

\sdendspace The length of the rule between the last item on a line and the arrow
at the very end. Note that the final line also has extra rubber space on the
end. This is a rubber length. Its default value is 1 em, although it will shrink
by up to 10 pt.

\sdmidskip The length of the rule on either side of a large construction (either a
stack or a rep). It is a rubber length. Its default value is 1/2 em, with a very
small amount of infinite stretch.

\sdtokskip The length of the rule on either side of a \tok item or syntax abbre-
viation. It is a rubber length. Its default value is 1/4 em, with a very small
amount of inifnite stretch.

\sdfinalskip The length of the rule which finishes the last line of a syntax di-
agram. It is a rubber length. Its default value is 1/2 em, with 10000 fil of
stretch, which will left-align the items on the line.2

2This is a little TEXnical. The idea is that if a stray 1 fil of stretch is added to the end of the
line, it won’t be noticed. However, the alignment of the text on the line can still be modified
using \sd@rule\hfill, if you’re feeling brave.

9

\sdrulewidth Half the width of the rules used in the diagram. It is a rigid length.
Its default value is 0.2 pt.

\sdcirclediam The diameter of the circle from which the quadrants used in
rounded-style diagrams are taken. This must be a multiple of 4 pt, or else
the lines on the diagram won’t match up.

In addition, you should call \sdsetstrut passing it the total height (height +
depth) of a normal line of text at the current size. Normally, the value of
\baselineskip will be appropriate.

You can also alter the appearance of stacks and reps by using their optional
positioning arguments. By default, stacks descend below the main line of the
diagram, and reps extend above it. Specifying an optional argument of [b] for
either environment reverses this, putting stacks above and reps below the line.

1.7 Changing the presentation styles
You can change the way in which the syntax items are typeset by altering some
simple commands (using \renewcommand). Each item (nonterminals, as typeset
by \synt, and quoted and unquoted terminals, as typeset by \lit and \lit*) has
two style commands associated with it, as shown in the table below.

Syntax item Left command Right command
Nonterminals \syntleft \syntright
Quoted terminals \litleft \litright
Unquoted terminals \ulitleft \ulitright

It’s not too hard to see how this works. For example, if you look at the
implementation for \syntleft and \syntright in the implementation section,
you’ll notice that they’re defined like this:

\newcommand{\syntleft}{\langle\normalfont\itshape}
\newcommand{\syntright}{\rangle}

I think this is fairly simple, if you understand things like font changing.
Note that changing these style commands alters the appearance of all syntax

objects of the appropriate types, as created by the \synt and \lit commands, in
grammar environments, and in syntax diagrams.

2 Change history

Version 1.07
• Fixed problem with underscore hacking in a tabbing environment.

Version 1.06
• Added style hooks for syntax items.

• Improved colour handling in syntax diagrams, thanks to the \doafter pack-
age.

10

• Fixed some nasty bugs in the grammar environment which confused other
lists and ruined the spacing. The grammar handling is now much tidier in
general.

Version 1.05
• Fixed ‘the bug’ in the syntax diagram typesetting. It now breaks lines almost

psychically, and doesn’t break in the wrong places.

• Almost rewrote the grammar environment. It now does lots of the list han-
dling itself, to allow more versatile typesetting of the left hand sides. There’s
lots of evil in there now.

• Added some more configurability. In particular, two new settings have been
added to control grammar environments, and a neat way of adding new
syntax diagram structures has been introduced.

Version 1.04
• Changed the vertical positioning of the rules, to make all the text line up

properly. While the old version was elegant and simple, it had the drawback
of looking nasty.

• Allow line breaks at underscores, but don’t if there’s another one afterwards.
Also, prevent losing following space if underscore is written to a file.

Version 1.02
• Added support for rounded corners in syntax diagrams.

• Changed lots of \hskip commands to \kerns, to prevent possible line breaks.

Version 1.01
• Allowed disabling of underscore active character, to avoid messing up file-

names.

• Added \grammarparsep and \grammarindent length parameters to control
the appearance of grammars.

3 Implementation of syntax
1 〈∗package〉
3.1 Options handling
We define all the options we know about, and then see what’s been put on the
usepackage line.

The options we provide currently are as follows:

rounded draws neatly rounded edges on the diagram.

square draws squared-off edges on the diagram. This is the default.

11

nounderscore disables the undescore active character, The _ command still
produces the nice version created here.

2 \DeclareOption{rounded}{\sd@roundtrue}
3 \DeclareOption{square}{\sd@roundfalse}
4 \DeclareOption{nounderscore}{\@uscorefalse}

Now process the options:

5 \newif\ifsd@round
6 \newif\if@uscore\@uscoretrue
7 \ExecuteOptions{square}
8 \ProcessOptions

3.2 Special character handling
A lot of the syntax package requires the use special active characters. These must
be added to two lists: \dospecials, which is used by \verb and friends, and
\@sanitize, which is used by \index. The two macros here, \addspecial and
\remspecial, provide these registration facilities.

Two similar macros are found in Frank Mittelbach’s doc package: these have
the disadvantage of global operation. My macros here are based on Frank’s, which
in turn appear to be based on Donald Knuth’s list handling code presented in
Appendix D of The TEXbook.

Both these macros take a single argument: a single-character control sequence
containing the special character to be added to or removed from the lists.

\addspecial This is reasonably straightforward. We remove the sequence from the lists, in case
it’s already there, and add it in in the obvious way. This requires a little bit of
fun with \expandafter.

9 \def\addspecial#1{%
10 \remspecial{#1}%
11 \expandafter\def\expandafter\dospecials\expandafter{\dospecials\do#1}%
12 \expandafter\def\expandafter\@santize\expandafter{%
13 \@sanitize\@makeother#1}%
14 }

\remspecial This is the difficult bit. Since \dospecials and \@sanitize have the form of list
macros, we can redefine \do and \@makeother to do the job for us. We must be
careful to put the old meaning of \@makeother back. The current implementation
assumes it knows what \@makeother does.

15 \def\remspecial#1{%
16 \def\do##1{\ifnum‘#1=‘##1 \else\noexpand\do\noexpand##1\fi}%
17 \edef\dospecials{\dospecials}%
18 \def\@makeother##1{\ifnum‘#1=‘##1 \else%
19 \noexpand\@makeother\noexpand##1\fi}%
20 \edef\@sanitize{\@sanitize}%
21 \def\@makeother##1{\catcode‘##112}%
22 }

12

3.3 Underscore handling
When typing a lot of identifiers, it can be irksome to have to escape all ‘_’ char-
acters in the manuscript. We make the underscore character active, so that it
typesets an underscore in horizontal mode, and does its usual job as a subscript
operator in maths mode. Underscore must already be in the special character lists,
because of its use as a subscript character, so this doesn’t cause us a problem.

\underscore The \underscore macro typesets an underline character, using a horizontal rule.
This is positioned slightly below the baseline, and is also slightly wider than the
default TEX underscore. This code is based on a similar implementation found in
the lgrind package.
23 \def\underscore{%
24 \leavevmode%
25 \kern.06em%
26 \vbox{%
27 \hrule\@width.6em\@depth.4ex\@height-.34ex%
28 }%
29 \ifdim\fontdimen\@ne\font=\z@%
30 \kern.06em%
31 \fi%
32 }

\@uscore This macro is called by the ‘_’ active character to sort out what to do.
If this is maths mode, we use the \sb macro, which is already defined to

do subscripting. Otherwise, we call \textunderscore, which picks the nicest
underscore it can find.

There’s some extra cunningness here, because I’d like to be able to hyphenate
after underscores usually, but not when there’s another one following. And then,
because tabbing redefines _, there’s some more yukkiness to handle that: the
usual \@tabacckludge mechanism doesn’t cope with this particular case.
33 \let\usc@builtindischyphen\-
34 \def\@uscore.{%
35 \ifmmode%
36 \expandafter\@firstoftwo%
37 \else%
38 \expandafter\@secondoftwo%
39 \fi%
40 \sb%
41 {\textunderscore\@ifnextchar_{}{\usc@builtindischyphen}}%
42 }

Now we set up the active character. Note the \protect, which makes under-
scores work reasonably well in moving arguments. Note also the way we end with
a some funny stuff to prevent spaces being lost if this is written to a file.
43 \if@uscore
44 \AtBeginDocument{%
45 \catcode‘_\active%
46 \begingroup%
47 \lccode‘\~‘_%
48 \lowercase{\endgroup\def~{\protect\@uscore.}}%
49 }
50 \fi

13

Finally, we redefine the _ macro to use our own \underscore, because it’s
prettier. Actually, we don’t: we just redefine the \?\textunderscore command
(funny name, isn’t it?).
51 \expandafter\let\csname?\string\textunderscore\endcsname\underscore

3.4 Abbreviated verbatim notation
In similar style to the doc package, we allow the user to set up characters which
delimit verbatim text. Unlike doc, we make such changes local to the current
group. This is performed through the \shortverb and \unverb commands.

The implementations of these commands are based upon the \MakeShortVerb
and \DeleteShortVerb commands of the doc package, although these versions
have effect local to the current grouping level. This prevents their redefinition
of \dospecials from interfering with the grammar shortcuts, which require local
changes only.

The command \shortverb takes a single argument: a single-character con-
trol sequence defining which character to make into the verbatim text delimiter.
We store the old meaning of the active character in a control sequence called
\mn@\〈char〉. Note that this control sequence contains a backslash character,
which is a little odd. We also define a command \cc@\〈char〉 which will return
everything to normal. This is used by the \unverb command.

\shortverb Here we build the control sequences we need to make everything work nicely. The
active character is defined via \lowercase, using the ~ character: this is already
made active by TEX.

The actual code requires lots of fiddling with \expandafter and friends.
52 \def\shortverb#1{%

First, we check to see if the command \cc@\〈char〉 has been defined.
53 \@ifundefined{cc@\string#1}{%

If it hasn’t been defined, we add the character to the specials list.
54 \addspecial#1%

Now we set our character to be the lowercase version of ~, which allows us to
use it, even though we don’t know what it is.
55 \begingroup%
56 \lccode‘\~‘#1%

Finally, we reach the tricky bit. All of this is lowercased, so any occurrences
of ~ are replaced by the user’s special character.
57 \lowercase{%
58 \endgroup%

We remember the current meaning of the character, in case it has one. We
have to use \csname to build the rather strange name we use for this.
59 \expandafter\let\csname mn@\string#1\endcsname~%

Now we build \cc@\〈char〉. This is done with \edef, since more of this needs
to be expanded now than not. In this way, the actual macros we create end up
being very short.
60 \expandafter\edef\csname cc@\string#1\endcsname{%

14

First, add a command to restore the character’s old catcode.

61 \catcode‘\noexpand#1\the\catcode‘#1%

Now we restore the character’s old meaning, using the version we saved earlier.

62 \let\noexpand~\expandafter\noexpand%
63 \csname mn@\string#1\endcsname%

Now we remove the character from the specials lists.

64 \noexpand\remspecial\noexpand#1%

Finally, we delete this macro, so that \unverb will generate a warning if the
character is \unverbed again.

65 \let\csname cc@\string#1\endcsname\relax%
66 }%

All of that’s over now. We set up the new definition of the character, in terms
of \verb, and make the character active. The nasty \syn@ttspace is there to
make the spacing come out right. It’s all right really. Honest.

67 \def~{\verb~\syn@ttspace}%
68 }%
69 \catcode‘#1\active%

If our magic control sequence already existed, we can assume that the character
is already a verbatim delimiter, and raise a warning.

70 }{%
71 \PackageWarning{syntax}{Character ‘\expandafter\@gobble\string#1’
72 is already a verbatim\MessageBreak
73 delimiter}%
74 }%
75 }

\unverb This is actually terribly easy: we just use the \cc@\〈char〉 command we definied
earlier, after making sure that it’s been defined.

76 \def\unverb#1{%
77 \@ifundefined{cc@\string#1}{%
78 \PackageWarning{syntax}{Character ‘\expandafter\@gobble\string#1’
79 is not a verbatim\MessageBreak
80 delimiter}%
81 }{%
82 \csname cc@\string#1\endcsname%
83 }%
84 }

3.5 Style hooks for syntax forms
To allow the appearance of syntax things to be configured, we provide some rede-
finable bits.

The three types of objects (nonterminal symbols, and quoted and unquoted
terminals) each have two macros associated with them: one which does the ‘left’
bit of the typesetting, and one which does the ‘right’ bit. The items are typeset
as LR boxes. I’ll be extra good while defining these hooks, so that it’s obvious
what’s going on; macho TEX hacker things resume after this section.

15

\syntleft
\syntright

I can’t see why anyone would want to change the typesetting of nonterminals,
although I’ll provide the hooks for symmetry’s sake.

85 \newcommand{\syntleft}{\langle\normalfont\itshape}
86 \newcommand{\syntright}{\rangle}

\ulitleft
\ulitright

\litleft
\litright

Now we can define the left and right parts of quoted and unquoted terminals.
US readers may want to put double quotes around the quoted terminals, for ex-
ample.

87 \newcommand{\ulitleft}{\normalfont\ttfamily\syn@ttspace\frenchspacing}
88 \newcommand{\ulitright}{}
89 \newcommand{\litleft}{‘\bgroup\ulitleft}
90 \newcommand{\litright}{\ulitright\egroup’}

3.6 Simple syntax typesetting
In general text, we allow access to our typesetting conventions through standard
LATEX commands.

\synt The \synt macro typesets its argument as a syntactic quantity. It puts the text
of the argument in italics, and sets angle brackets around it. Breaking of a \synt
object across lines is forbidden.

91 \def\synt#1{\mbox{\syntleft{#1\/}\syntright}}

\lit The \lit macro typesets its argument as literal text, to be typed in. Normally,
this means setting the text in \tt font, and putting quotes around it, although
the quotes can be suppressed by using the ∗-variant.

The \syn@ttspace macro sets up the spacing for the text nicely: \tt spaces
tend to be a little wide.

92 \def\lit{\@ifstar{\lit@i\ulitleft\ulitright}{\lit@i\litleft\litright}}
93 \def\lit@i#1#2#3{\mbox{#1{#3\/}#2}}

\syn@ttspace This sets up the \spaceskip value for \tt text.

94 \def\syn@ttspace@{\spaceskip.35em\@plus.2em\@minus.15em\relax}

However, this isn’t always the right thing to do.

95 \def\ttthinspace{\let\syn@ttspace\syn@ttspace@}
96 \def\ttthickspace{\let\syn@ttspace\@empty}

I know what I like thoough.

97 \ttthinspace

3.6.1 The shortcuts

The easy part is over now. The next job is to set up the ‘grammar shortcuts’
which allow easy changing of styles.

We support four shortcuts:

• ‘literal text’ typesets ‘literal text’

• <non-terminal> typesets 〈non-terminal〉
• "unquoted text" typesets unquoted text

16

• | typesets a | character

These are all implemented through active characters, which are enabled using the
\syntaxShortcuts macro, described below.

\readupto \readupto{〈char〉}{〈decls〉}{〈command〉} will read all characters up until the
next occurrence of 〈char〉. Normally, all special characters will be deactivated.
However, you can reactivate some characters, using the 〈decls〉 argument, which
is processed before the text is read.

The code is borrowed fairly obviously from the LATEX2ε source for the \verb
command.
98 \def\readupto#1#2#3{%
99 \bgroup%

100 \verb@eol@error%
101 \let\do\@makeother\dospecials%
102 #2%
103 \catcode‘#1\active%
104 \lccode‘\~‘#1%
105 \gdef\verb@balance@group{\verb@egroup%
106 \@latex@error{\noexpand\verb illegal in command argument}\@ehc}%
107 \def\@vhook{\verb@egroup#3}%
108 \aftergroup\verb@balance@group%
109 \lowercase{\let~\@vhook}%
110 }

\syn@assist The \syn@assist macro is used for defining three of the shortcuts. It is called as

\syn@assist{〈left-decls〉}{〈actives〉}{〈delimeter〉}
{〈right-decls〉}{〈end-cmd〉}

It creates an hbox, sets up the escape sequences for quoting our magic charac-
ters, and then typesets a box containing

〈left-decls〉{〈delimited-text〉\/}〈right-decls〉
The 〈left-decls〉 and 〈right-decls〉 can be \relax if they’re not required.
The 〈actives〉 argument is passed to \readupto, to allow some special charac-

ters through. By default, we re-enable \, and make ‘␣’ typeset some space glue,
rather than a space character. A macro ‘\␣’ is defined to actually print a space
character, which yield ‘␣’ in the ‘\tt’ font.

Finally, it defines a \ch command, which, given a single-character control
sequence as its argument, typesets the character. This is useful, since ‘ has been
made active when we set up these calls, so the direct \char‘\〈char〉 doesn’t work.

111 \def\syn@assist#1#2#3#4#5{%

First, we start the box, and open a group. We use \mbox because it does all
the messing with \leavevmode which is needed.

112 \mbox\bgroup%

Next job is to set up the escape sequences.
113 \chardef\\‘\\%
114 \chardef\>‘\>%
115 \chardef\’‘\’%
116 \chardef\"‘\"%
117 \chardef\ ‘\ %

17

Now to define \ch. This is done the obvious way.

118 \def\ch##1{\char‘##1}%

For active characters, we do some fiddling with \lccodes.

119 \def\act##1{%
120 \catcode‘##1\active%
121 \begingroup%
122 \lccode‘\~‘##1%
123 \lowercase{\endgroup\def~}%
124 }%

Finally, we do the real work of setting the text. We use \readupto to actually
find the text we want.

125 #1%
126 \begingroup%
127 \readupto#3{%
128 \catcode‘\\0%
129 \catcode‘\ 10%
130 #2%
131 }{%
132 \/\endgroup#4\egroup#5%
133 }%
134 }

\syn@shorts This macro actually defines the expansions for the active characters. We have
to do this separately because ‘ must be active when we use it in the \def, but
we can’t do that and use \catcode at the same time. The arguments are com-
mands to do before and after the actual command. These are passed up from
\syntaxShortcuts.

All of the characters use \syn@assist in the obvious way except for |, which
drops into maths mode instead.

Note that when changing the catcodes, we must save ‘ until last.

135 \begingroup
136 \catcode‘\<\active
137 \catcode‘\|\active
138 \catcode‘\"\active
139 \catcode‘\‘\active
140 %
141 \gdef\syn@shorts#1#2{%

The ‘<’ character must typeset its argument in italics. We make ‘_’ do the
same as the ‘_’ command.

142 \def<{%
143 #1%
144 \syn@assist%
145 \syntleft%
146 {\act_{\@uscore.}}%
147 >%
148 \syntright%
149 {#2}%
150 }%

18

The ‘‘’ and ‘"’ characters should print its argument in \tt font. We change
the ‘\tt’ space glue to provide nicer spacing on the line.

151 \def‘{%
152 #1%
153 \syn@assist%
154 \litleft%
155 \relax%
156 ’%
157 \litright%
158 {#2}%
159 }%
160 \def"{%
161 #1%
162 \syn@assist%
163 \ulitleft%
164 \relax%
165 "%
166 \ulitright%
167 {#2}%
168 }%

Finally, the ‘|’ character is typeset by using the mysterious \textbar com-
mand.

169 \def|{\textbar}%

We’re finished here now.

170 }
171 %
172 \endgroup

\syntaxShortcuts This is a user-level command which enables the use of our shortcuts in the current
group. It uses \addspecial, defined below, to register the active characters, sets
up their definitions and activates them.

The two arguments are commands to be performed before and after the han-
dling of the abbreviation. In this way, you can further process the output.

This command is not intended to be used directly by users: it should be used
by other macros and packages which wish to take advantage of the facilities offered
by this package. We provide a \synshorts declaration (which may be used as an
environment, of course) which is more ‘user palatable’.

173 \def\syntaxShortcuts#1#2{%
174 \syn@shorts{#1}{#2}%
175 \addspecial\‘%
176 \addspecial\<%
177 \addspecial\|%
178 \addspecial\"%
179 \catcode‘\|\active%
180 \catcode‘\<\active%
181 \catcode‘\"\active%
182 \catcode‘\‘\active%
183 }
184 %
185 \def\synshorts{\syntaxShortcuts\relax\relax}

19

\synshortsoff This macro can be useful occasionally: it disables the syntax shortcuts, so you can
type normal text for a while.

186 \def\synshortsoff{%
187 \catcode‘\|12%
188 \catcode‘\<12%
189 \catcode‘\"12%
190 \catcode‘\‘12%
191 }

\syntax The \syntaxmacro typesets its argument, allowing the use of our shortcuts within
the argument.

Actually, we go to some trouble to ensure that the argument to \syntax isn’t a
real argument so we can change catcodes as we go. We use the \let\@let@token=
trick from Plain TEX to do this.

192 \def\syntax#{\bgroup\syntaxShortcuts\relax\relax\let\@let@token}

grammar The grammar environment is the final object we have to define. It allows typeset-
ting of beautiful BNF grammars.

First, we define the length parameters we need:

193 \newskip\grammarparsep
194 \grammarparsep8\p@\@plus\p@\@minus\p@
195 \newdimen\grammarindent
196 \grammarindent2em

Now define the default label typesetting. This macro is designed to be replaced
by a user, so we’ll be extra-well-behaved and use genuine LATEX commands. Well,
almost . . .

197 \newcommand{\grammarlabel}[2]{%
198 \synt{#1} \hfill#2%
199 }

Now for a bit of hacking to make the item stuff work properly. This gets done
for every new paragraph that’s started without an \item command.

First, store the left hand side of the production in a box. Then I’ll end the
paragraph, and insert some nasty glue to take up all the space, so no-one will ever
notice that there was a paragraph break there. The strut just makes sure that I
know exactly how high the line is.

200 \def\gr@implitem<#1> #2 {%
201 \sbox\z@{\hskip\labelsep\grammarlabel{#1}{#2}}%
202 \strut\@@par%
203 \vskip-\parskip%
204 \vskip-\baselineskip%

The \item command will notice that I’ve inserted these funny glues and try to
remove them: I’ll stymie its efforts by inserting an invisible rule. Then I’ll insert
the label using \item in the normal way.

205 \hrule\@height\z@\@depth\z@\relax%
206 \item[\unhbox\z@]%

Just before I go, I’ll make ‘<’ back into an active character.

207 \catcode‘\<\active%
208 }

20

Now for the environment proper. Deep down, it’s a list environment, with
some nasty tricks to stop anyone from noticing.

The first job is to set up the list from the parameters I’m given.
209 \newenvironment{grammar}{%
210 \list{}{%
211 \labelwidth\grammarindent%
212 \leftmargin\grammarindent%
213 \advance\grammarindent\labelsep
214 \itemindent\z@%
215 \listparindent\z@%
216 \parsep\grammarparsep%
217 }%

We have major problems in \raggedright layouts, which try to use \par to
start new lines. We go back to normal \\ newlines to try and bodge our way
around these problems.

218 \let\\\@normalcr

Now to enable the shortcuts.
219 \syntaxShortcuts\relax\relax%

Now a little bit of magic. The \alt macro moves us to a new line, and type-
sets a vertical bar in the margin. This allows typesetting of multiline alternative
productions in a pretty way.

220 \def\alt{\\\llap{\textbar\quad}}%

Now for another bit of magic. We set up some \par cleverness to spot the
start of each production rule and format it in some cunning and user-defined way.

221 \def\gr@setpar{%
222 \def\par{%
223 \parshape\@ne\@totalleftmargin\linewidth%
224 \@@par%
225 \catcode‘\<12%
226 \everypar{%
227 \everypar{}%
228 \catcode‘\<\active%
229 \gr@implitem%
230 }%
231 }%
232 }%
233 \gr@setpar%
234 \par%

Now set up the \[[and \]] commands to do the right thing. We have to
check the next character to see if it’s correct, otherwise we’ll open a maths display
as usual.

235 \let\gr@leftsq\[%
236 \let\gr@rightsq\]%
237 \def\gr@endsyntdiag]{\end{syntdiag}\gr@setpar\par}%
238 \def\[{\@ifnextchar[{\begin{syntdiag}\@gobble}\gr@leftsq}%
239 \def\]{\@ifnextchar]\gr@endsyntdiag\gr@rightsq}%

Well, that’s it for this side of the environment.
240 }{%

21

Closing the environment is a simple matter of tidying away the list.

241 \@newlistfalse%
242 \everypar{}%
243 \endlist%
244 }

3.7 Syntax diagrams
Now we come to the final and most complicated part of the package.

Syntax diagrams are drawn using arrow characters from LATEX’s line font, used
in the picture environment, and rules. The horizontal rules of the diagram are
drawn along the baselines of the lines in which they are placed. The text items in
the diagram are placed in boxes and lowered below the main baseline. Struts are
added throughout to keep the vertical spacing consistent.

The vertical structures (stacks and loops) are all implemented with TEX’s
primitive \halign command.

3.7.1 User-configurable parameters

First, we allocate the 〈dimen〉 and 〈skip〉 arguments needed. Fixed lengths, as the
LATEXbook calls them, are allocated as 〈dimen〉s, to take some of the load off of
all the 〈skip〉 registers.

245 \newskip\sdstartspace
246 \newskip\sdendspace
247 \newskip\sdmidskip
248 \newskip\sdtokskip
249 \newskip\sdfinalskip
250 \newdimen\sdrulewidth
251 \newdimen\sdcirclediam
252 \newdimen\sdindent

We need some TEX 〈dimen〉s for our own purposes, to get everything in the
right places. We use labels for the ‘temporary’ TEX parameters which we use, to
avoid wasting registers.

253 \dimendef\sd@lower\z@
254 \dimendef\sd@upper\tw@
255 \dimendef\sd@mid4
256 \dimendef\sd@topcirc6
257 \dimendef\sd@botcirc8

\sd@setsize When the text size for syntax diagrams changes, it’s necessary to work out the
height for various rules in the diagram.

258 \def\sd@setsize{%
259 \sd@mid\ht\strutbox%
260 \advance\sd@mid-\dp\strutbox%
261 \sd@mid.5\sd@mid%
262 \sd@upper\sdrulewidth%
263 \advance\sd@upper\sd@mid%
264 \sd@lower\sdrulewidth%
265 \advance\sd@lower-\sd@mid%
266 \sd@topcirc-.5\sdcirclediam%
267 \advance\sd@topcirc\sd@mid%

22

268 \sd@botcirc-.5\sdcirclediam%
269 \advance\sd@botcirc-\sd@mid%
270 }

\sdsize You can set the default type size used by syntax diagrams by redefining the
\sdsize command, using the \renewcommand command.

By default, syntax diagrams are set slightly smaller than the main body text.3

271 \newcommand{\sdsize}{%
272 \small%
273 }

\sdlengths Finally, the default length parameters are set in the \sdlengths command. You
can redefine the command using \renewcommand.

We set up the length parameters here.

274 \newcommand{\sdlengths}{%
275 \setlength{\sdstartspace}{1em minus 10pt}%
276 \setlength{\sdendspace}{1em minus 10pt}%
277 \setlength{\sdmidskip}{0.5em plus 0.0001fil}%
278 \setlength{\sdtokskip}{0.25em plus 0.0001fil}%
279 \setlength{\sdfinalskip}{0.5em plus 10000fil}%
280 \setlength{\sdrulewidth}{0.2pt}%
281 \setlength{\sdcirclediam}{8pt}%
282 \setlength{\sdindent}{0pt}%
283 }

3.7.2 Other declarations

We define four switches. The table shows what they’re used for.

Switch Meaning
\ifsd@base We are at ‘base level’ in the diagram: i.e., not in

any other sorts of constructions. This is used to
decide whether to allow line breaking.

\ifsd@top The current loop construct is being typeset with
the loop arrow above the baseline.

\ifsd@toplayer We are typesetting the top layer of a stack. This
is used to ensure that the vertical rules on either
side are typeset at the right height.

\ifsd@backwards We’re typesetting backwards, because we’re in the
middle of a loop arrow. the only difference this
makes is that any subloops have the arrow on the
side.

Table 1: Syntax diagram switches
3I’ve used pure LATEX commands for this and the \sdlengths macro, to try and illustrate

how these values might be changed by a user. The rest of the code is almost obfuscted in its use
of raw TEX features, in an attempt to dissuade more naïve users from fiddling with it. I suppose
this is what you get when you let assembler hackers loose with something like LATEX.

23

284 \newif\ifsd@base
285 \newif\ifsd@top
286 \newif\ifsd@toplayer
287 \newif\ifsd@backwards

\sd@err We output our errors through this macro, which saves a little typing.

288 \def\sd@err{\PackageError{syntax}}

3.7.3 Arrow-drawing

We need to draw some arrows. LATEX tries to make this as awkward as possible,
so we have to start moving the arrows around in boxes quite a lot.

The left and right pointing arrows are fairly simple: we just add some horizontal
spacing to prevent the width of the arrow looking odd.

289 \def\sd@arrow{%
290 \ht\tw@\z@%
291 \dp\tw@\z@%
292 \raise\sd@mid\box\tw@%
293 \egroup%
294 }
295 \def\sd@rightarr{%
296 \bgroup%
297 \setbox\tw@\hbox{\kern-6\p@\@linefnt\char’55}%
298 \sd@arrow%
299 }
300 \def\sd@leftarr{%
301 \bgroup%
302 \raise\sd@mid\hbox{\@linefnt\char’33\kern-6\p@}%
303 \sd@arrow%
304 }

The up arrow is very strange. We need to bring the arrow down to base level,
and smash its height.

305 \def\sd@uparr{%
306 \bgroup%
307 \setbox\tw@\hb@xt@\z@{\kern-\sdrulewidth\@linefnt\char’66\hss}%
308 \setbox\tw@\hbox{\lower10\p@\box\tw@}%
309 \sd@arrow%
310 }

The down arrow is similar, although it’s already at the right height. Thus, we
can just smash the box.

311 \def\sd@downarr{%
312 \bgroup%
313 \setbox\tw@\hb@xt@\z@{\kern-\sdrulewidth\@linefnt\char’77\hss}%
314 \sd@arrow%
315 }

3.7.4 Drawing curves

If the user has selected curved edges, we use the LATEX features provided to obtain
the curves. These are drawn slightly oddly to make it easier to fit them into the
diagram.

24

Some explanation about the LATEX circle font is probably called for before
we go any further. The font consists of sets of four quadrants of a particular
size (and some other characters, which aren’t important at the moment). Each
collection of quadrants fit together to form a perfect circle of a given diameter.
The individual quadrant characters have strange bounding boxes, as described in
the files lcircle.mf and ltpict.dtx, and also in Appendix D of The TEXbook. Our job
here is to make these quadrants useful in the context of drawing syntax diagrams.

\sd@circ First, we define \sd@circ, which performs the common parts of the four routines.
Since the characters in the circle font are grouped together, we can pick out a
particular corner piece by specifying its index into the group for the required size.
The \sd@circ routine will pick out the required character, given this index as an
argument, and put it in box 2, after fiddling with the sizes a little:

• We clear the width to zero. The individual routines then add a kern of the
correct amount, so that the quadrant appears in the right place.

• The piece is lowered by half the rule width. This positions the top and
bottom pieces of the circle to be half way over the baseline, which is the
correct position for the rest of the diagram.

Finally, we make sure we’re in horizontal mode: horrific results occur if this is
not the case. I’m sure I don’t need to explain this any more graphically.

316 \def\sd@circ#1{%
317 \@getcirc\sdcirclediam%
318 \advance\@tempcnta#1%
319 \setbox\tw@\hbox{\lower\sdrulewidth%
320 \hbox{\@circlefnt\char\@tempcnta}}%
321 \wd\tw@\z@%
322 \leavevmode%
323 }

\sd@tlcirc
\sd@trcirc
\sd@blcirc
\sd@brcirc

These are the macros which actually draw quadrants of circles. They all call
\sd@circ, passing an appropriate index, and then fiddle with the box sizes and
apply kerning specific to the quadrant positioning.

The exact requirements for positioning are as follows:

• The horizontal parts of the arcs must lie along the baseline (i.e., half the
line must be above the baseline, and half must be below). This is consistent
with the horizontal rules used in the diagram.

• The vertical parts must overlap vertical rules on either side, so that a
\vrule\sd@xxcirc makes the arc appear to be a real curve in the line. The
requirements are actually somewhat inconsistent; for example, the stack en-
vironment uses curves before the \vrules. Special requirements like this are
handled as special cases later.

• The height and width of the arc are at least roughly correct.

324 \def\sd@tlcirc{{%
325 \sd@circ3%
326 \ht\tw@\sdrulewidth%
327 \dp\tw@.5\sdcirclediam%

25

328 \kern-\tw@\sdrulewidth%
329 \raise\sd@mid\box\tw@%
330 \kern.5\sdcirclediam%
331 }}

332 \def\sd@trcirc{{%
333 \sd@circ0%
334 \ht\tw@\sdrulewidth%
335 \dp\tw@.5\sdcirclediam%
336 \kern.5\sdcirclediam%
337 \raise\sd@mid\box\tw@%
338 }}

339 \def\sd@blcirc{{%
340 \sd@circ2%
341 \ht\tw@.5\sdcirclediam%
342 \dp\tw@\sdrulewidth%
343 \kern-\tw@\sdrulewidth%
344 \raise\sd@mid\box\tw@%
345 \kern.5\sdcirclediam%
346 }}

347 \def\sd@brcirc{{%
348 \sd@circ1%
349 \ht\tw@.5\sdcirclediam%
350 \dp\tw@\sdrulewidth%
351 \kern.5\sdcirclediam%
352 \raise\sd@mid\box\tw@%
353 }}

\sd@llc
\sd@rlc

In the rep environment, we need to be able to draw arcs with horizontal lines
running through them. The two macros here do the job nicely. \sd@llc (which is
short for left overlapping circle) is analogous to \llap: it puts its argument in a
box of zero width, sticking out to the left. However, it also draws a rule along the
baseline. This is important, as it prevents text from overprinting the arc. \sd@rlc
is very similar, just the other way around.

354 \def\sd@llc#1{%
355 \hb@xt@.5\sdcirclediam{%
356 \sd@rule\hskip.5\sdcirclediam%
357 \hss%
358 #1%
359 }%
360 }

361 \def\sd@rlc#1{%
362 \hb@xt@.5\sdcirclediam{%
363 #1%
364 \hss%
365 \sd@rule\hskip.5\sdcirclediam%
366 }%
367 }

3.7.5 Drawing rules

It’s important to draw the rules along the baseline, rather than above it: hence,
the depth of the rule must be equal to the height.

26

\sd@rule We use rule leaders instead of glue through most of the syntax diagrams. The
command \sd@rule〈skip〉 draws a rule of the correct dimensions, which has the
behaviour of an \hskip〈skip〉.

368 \def\sd@rule{\leaders\hrule\@height\sd@upper\@depth\sd@lower}

\sd@gap The gap between elements is added using this macro. It will allow a line break if
we’re at the top level of the diagram, using a rather strange discretionary.

This is called as \sd@gap{〈skip-register〉}.
369 \def\sd@gap#1{%

First, we see if we’re at the top level. Within constructs, we avoid the overhead
of a \discretionary. We put half of the width of the skip on each side of the
discretionary break.

370 \ifsd@base%
371 \skip@#1%
372 \divide\skip\z@\tw@%
373 \nobreak\sd@rule\hskip\skip@%
374 \discretionary{%
375 \sd@qarrow{->}%
376 }{%
377 \hbox{%
378 \sd@qarrow{>-}%
379 \sd@rule\hskip\sdstartspace%
380 \sd@rule\hskip3.5\p@%
381 }%
382 }{%
383 }%
384 \nobreak\sd@rule\hskip\skip@%

If we’re not at the base level, we just put in a rule of the correct width.

385 \else%
386 \sd@rule\hskip#1%
387 \fi%
388 }

3.7.6 The syntdiag environment

All syntax diagrams are contained within a syntdiag environment.

syntdiag The only argument is a collection of declarations, which by default is

\sdsize\sdlengths

However, if the optional argument is not specified, TEX reads the first character
of the environment, which may not be catcoded correctly. We set up the catcodes
first, using the \syntaxShortcuts command, and then read the argument. We
don’t use \newcommand, because that would involve creating yet another macro.
Time to fiddle with \@ifnextchar . . .

389 \def\syntdiag{%
390 \syntaxShortcuts\sd@tok@i\sd@tok@ii%
391 \@ifnextchar[\syntdiag@i{\syntdiag@i[]}%
392 }

27

Now we actually do the job we’re meant to.

393 \def\syntdiag@i[#1]{%

The first thing to do is execute the user’s declarations. We then set up things
for the font size.

394 \sdsize\sdlengths%
395 #1%
396 \sd@setsize%

Next, we start a list, to change the text layout.

397 \list{}{%
398 \leftmargin\sdindent%
399 \rightmargin\leftmargin%
400 \labelsep\z@%
401 \labelwidth\z@%
402 }%
403 \item[]%

We reconfigure the paragraph format quite a lot now. We clear \parfillskip
to avoid any justification at the end of the paragraph. We also turn off paragraph
indentation.

404 \parfillskip\z@%
405 \noindent%

Next, we add in the arrows on the beginning of the line, and a bit of glue.

406 \sd@qarrow{>>-}%
407 \nobreak\sd@rule\hskip\sdstartspace%

This is the base level of the diagram, so we enable line breaking.

408 \sd@basetrue%

Since the objects being broken are rather large, we enable sloppy line
breaking. We also try to avoid page breaks in mid-diagram, by upping the
\interlinepenalty.

409 \sloppy%
410 \interlinepenalty100%
411 \hyphenpenalty0%

We handle all the spacing within the environment, so we make TEX ignore
spaces and newlines.

412 \catcode‘\ 9%
413 \catcode‘\^^M9%

We now have to change the behaviour of \\ to line-break syntax diagrams.

414 \let\\\sd@newline%
415 \ignorespaces%
416 }

When we end the diagram, we just have to add in the final fillskip, and double
arrow.

417 \def\endsyntdiag{%
418 \unskip%
419 \nobreak\sd@rule\hskip\sdmidskip%

28

420 \sd@rule\hskip\sdfinalskip%
421 \sd@qarrow{-><}%
422 \endlist%
423 }

syntdiag* The starred form of syntdiag typesets a syntax diagram in LR-mode; this is useful
if you’re describing parts of syntax diagrams, for example.

This is in fact really easy. The first bit which checks for an optional argument
is almost identical to the non-∗ version.

424 \@namedef{syntdiag*}{%
425 \syntaxShortcuts\sd@tok@i\sd@tok@ii%
426 \@ifnextchar[\syntdiag@s@i{\syntdiag@s@i[]}%
427 }

Handle another optional argument giving the width of the box to fill.

428 \def\syntdiag@s@i[#1]{%
429 \@ifnextchar[{\syntdiag@s@ii{#1}}{\syntdiag@s@iii{#1}{\hbox}}%
430 }
431 \def\syntdiag@s@ii#1[#2]{\syntdiag@s@iii{#1}{\hb@xt@#2}}

Now to actually start the display. This is mostly simple. Just to make sure
about the LR-ness of the typesetting, I’ll put everything in an hbox.

432 \def\syntdiag@s@iii#1#2{%
433 \leavevmode%
434 #2\bgroup%

Now configure the typesetting according to the user’s wishes.

435 \let\@@left\left%
436 \let\@@right\right%
437 \def\left##1{\def\sd@startarr{##1}}%
438 \def\right##1{\def\sd@endarr{##1}}%
439 \left{>-}\right{->}%
440 \sdsize\sdlengths%
441 #1%
442 \sd@setsize%
443 \let\left\@@left%
444 \let\right\@@right%

Put in the initial double-arrow.

445 \sd@qarrow\sd@startarr%
446 \sd@rule\hskip\sdmidskip%

We’re in horizontal mode, so don’t bother with linebreaking.

447 \sd@basefalse%

Finally, disable spaces and things.

448 \catcode‘\ 9%
449 \catcode‘\^^M9%
450 \ignorespaces%
451 }

Ending the environment is very similar.

452 \@namedef{endsyntdiag*}{%
453 \unskip%

29

454 \sd@rule\hskip\sdmidskip%
455 \sd@rule\hskip\sdfinalskip%
456 \sd@qarrow\sd@endarr%
457 \egroup%
458 }

\sd@qarrow This typesets the various left and right arrows required in syntax diagrams. The
argument is one of ‘»-’, ‘->’, ‘>-’ or ‘-><’.

459 \def\sd@qarrow#1{%
460 \begingroup%
461 \lccode‘\~=‘\<\lowercase{\def~{<}}%
462 \hbox{\csname sd@arr@#1\endcsname}%
463 \endgroup%
464 }
465 \@namedef{sd@arr@>>-}{\sd@rightarr\kern-.5\p@\sd@rightarr\kern-\p@}
466 \@namedef{sd@arr@>-}{\sd@rightarr\kern-\p@}
467 \@namedef{sd@arr@->}{\sd@rightarr}
468 \@namedef{sd@arr@-><}{\sd@rightarr\kern-\p@\sd@leftarr}
469 \@namedef{sd@arr@...}{\cdots}
470 \@namedef{sd@arr@-}{}

\sd@newline The line breaking within a syntax diagram is controlled by the \sd@newline com-
mand, to which \\ is assigned.

We support all the standard LATEX features here. The line breaking involves
adding a fill skip and arrow, moving to the next line, adding an arrow and a rule,
and continuing.

471 \def\sd@newline{\@ifstar{\vadjust{\penalty\@M}\sd@nl@i}\sd@nl@i}
472 \def\sd@nl@i{\@ifnextchar[\sd@nl@ii\sd@nl@iii}
473 \def\sd@nl@ii[#1]{\vspace{#1}\sd@nl@iii}
474 \def\sd@nl@iii{%
475 \nobreak\sd@rule\hskip\sdmidskip%
476 \sd@rule\hskip\sdfinalskip%
477 \kern-3\p@%
478 \sd@rightarr%
479 \newline%
480 \sd@rightarr%
481 \nobreak\sd@rule\hskip\sdstartspace%
482 \sd@rule\hskip3.5\p@%
483 }

3.7.7 Putting things in the right place

Syntax diagrams have fairly stiff requirements on the positioning of text relative
to the diagram’s rules. To help people (and me) to write extensions to the syntax
diagram typesetting which automatically put things in the right place, I provide
some simple macros.

sdbox By placing some text in the sdbox environment, it will be read into a box and
then output at the correct height for the syntax diagram. Note that stuff in the
box is set in horizontal (LR) mode, so you’ll have to use a minipage if you want
formatted text. The macro also supplies rules on either side of the box, with a
length given in the environment’s argument.

30

Macro writers are given explicit permission to use this environment through
the \sdbox and \endsdbox commands if this makes life easier.

The calculation in the \endsdbox macro works out how to centre the box
vertically over the baseline. If the box’s height is h, and its depth is d, then its
centre-line is (h + d)/2 from the bottom of the box. Since the baseline is already
d from the bottom, we need to lower the box by (h + d)/2 − d, or h/2 − d/2.

484 \def\sdbox#1{%
485 \@tempskipa#1\relax%
486 \sd@gap\@tempskipa%
487 \setbox\z@\hbox\bgroup%
488 \begingroup%
489 \catcode‘\ 10%
490 \catcode‘\^^M5%
491 \synshortsoff%
492 }
493 \def\endsdbox{%
494 \endgroup%
495 \egroup%
496 \@tempdima\ht\z@%
497 \advance\@tempdima-\dp\z@%
498 \advance\@tempdima-\tw@\sd@mid%
499 \lower.5\@tempdima\box\z@%
500 \sd@gap\@tempskipa%
501 }

3.7.8 Typesetting syntactic items

Using the hooks built into the syntax abbreviations above, we typeset the text
into a box, and write it out, centred over the baseline. A strut helps to keep the
actual text baselines level for short pieces of text.

\sd@tok@i The preamble for a syntax abbreviation. We start a box, and set the space and
return characters to work again. A strut is added to the box to ensure correct
vertical spacing for normal text.

502 \def\sd@tok@i{%
503 \sdbox\sdtokskip%
504 \strut%
505 \space%
506 }

\sd@tok@ii
507 \def\sd@tok@ii{%
508 \space%
509 \endsdbox%
510 }

3.7.9 Inserting other pieces of text

Arbitrary text may be put into a syntax diagram through the use of the \tok
macro. Its ‘argument’ is typeset in the same way as a syntactic item (centred over
the baseline). The implementation goes to some effort to ensure that the text
is not actually an argument, to allow category codes to change while the text is
being typeset.

31

\tok We start a box, and make space and return do their normal jobs. We use
\aftergroup to regain control once the box is finished. \doafter is used to
get control after the group finishes.

511 \def\tok#{%
512 \sdbox\sdtokskip%
513 \strut%
514 \enspace%
515 \syntaxShortcuts\relax\relax%
516 \doafter\sd@tok%
517 }

The \sd@tok macro is similar to \sd@tok@ii above.

518 \def\sd@tok{%
519 \enspace%
520 \endsdbox%
521 }

3.7.10 The stack environment

The stack environment is used to present alternatives in a syntax diagram. The
alternatives are separated by \\ commands.

\stack The optional positioning argument is handled using LATEX’s \newcommand mecha-
nism.

522 \newcommand\stack[1][t]{%

First, we add some horizontal space.

523 \sd@gap\sdmidskip%

We’re within a complex construction, so we need to clear the \ifsd@base flag.

524 \begingroup\sd@basefalse%

The top and bottom rows of the stack are different to the others, since the
vertical rules mustn’t extend all the way up the side of the item. The bottom row
is handled separately by \endstack below. The top row must be handled via a
flag, \ifsd@toplayer.

Initially, the flag must be set true.

525 \sd@toplayertrue%

We set the \\ command to separate the items in the \halign.

526 \let\\\sd@stackcr%

The actual structure must be set in vertical mode, so we must place it in a
box. The position argument determines whether this must be a \vbox or a \vtop.
We also insert a bit of rounding if the options say we must.

527 \if#1t%
528 \let\@tempa\vtop%
529 \sd@toptrue%
530 \ifsd@round\llap{\sd@trcirc\kern\tw@\sdrulewidth}\fi%
531 \else\if#1b%
532 \let\@tempa\vbox%
533 \sd@topfalse%
534 \ifsd@round\llap{\sd@brcirc\kern\tw@\sdrulewidth}\fi%

32

535 \else%
536 \sd@err{Bad position argument passed to stack}%
537 {The positioning argument must be one of ‘t’ or ‘b’. I%
538 have^^Jassumed you meant to type ‘t’.}%
539 \let\@tempa\vtop%
540 \fi\fi%

Now we start the box, which we will complete at the end of the environment.
541 \@tempa\bgroup%

We must remove any extra space between rows of the table, since the rules will
not join up correctly. We can use \offinterlineskip safely, since each individual
row contains a strut.

542 \offinterlineskip%

Now we can start the alignment. We actually use Plain TEX’s \ialign macro,
which also clears \tabskip for us.

543 \ialign\bgroup%

The preamble is trivial, since we must do all of the work ourselves

544 ##\cr%

We can now start putting the text into a box ready for typesetting later. The
strut makes the vertical spacing correct.

545 \setbox\z@\hbox\bgroup%
546 \strut%
547 }

\endstack The first part of this is similar to the \sd@stackcr macro below, except that the
vertical rules are different. We don’t support rounded edges on single-row stacks,
although this isn’t a great loss to humanity.

548 \def\endstack{%
549 \egroup%
550 \ifsd@toplayer%
551 \sd@dostack\sd@upper\sd@lower\relax\relax%
552 \else%
553 \ifsd@round%
554 \ifsd@top%
555 \sd@dostack{\ht\z@}\sd@botcirc\sd@blcirc\sd@brcirc%
556 \else%
557 \sd@dostack{\ht\z@}\sd@botcirc\relax\relax%
558 \fi%
559 \else%
560 \sd@dostack{\ht\z@}\sd@lower\relax\relax%
561 \fi%
562 \fi%

We now close the \halign and the vbox we created.
563 \egroup%
564 \egroup%

Deal with any rounding we started off.

565 \ifsd@round%
566 \ifsd@top

33

567 \rlap{\kern\tw@\sdrulewidth\sd@tlcirc}%
568 \else%
569 \rlap{\kern\tw@\sdrulewidth\sd@blcirc}%
570 \fi%
571 \fi%

Finally, we add some horizontal glue to space the diagram out.

572 \endgroup\sd@gap\sdmidskip%
573 }

\sd@stackcr The \\ command is set to this macro during a stack environment.

574 \def\sd@stackcr{%

The first job is to close the box containing the previous item.

575 \egroup%

Now we typeset the vertical rules differently depending on whether this is the
first item in the stack. This looks quite terrifying initially, but it’s just an enumer-
ation of the possible cases for the different values of \ifsd@toplayer, \ifsd@top
and \ifsd@round, putting in appropriate rules and arcs in the right places.

576 \ifsd@toplayer%
577 \ifsd@round%
578 \ifsd@top%
579 \sd@dostack\sd@topcirc{\dp\z@}\relax\relax%
580 \else%
581 \sd@dostack\sd@topcirc{\dp\z@}\sd@tlcirc\sd@trcirc%
582 \fi%
583 \else%
584 \sd@dostack\sd@upper{\dp\z@}\relax\relax%
585 \fi%
586 \else%
587 \ifsd@round%
588 \ifsd@top%
589 \sd@dostack{\ht\z@}{\dp\z@}\sd@blcirc\sd@brcirc%
590 \else%
591 \sd@dostack{\ht\z@}{\dp\z@}\sd@tlcirc\sd@trcirc%
592 \fi%
593 \else%
594 \sd@dostack{\ht\z@}{\dp\z@}\relax\relax%
595 \fi%
596 \fi%

The next item won’t be the first, so we clear the flag.

597 \sd@toplayerfalse%

Now we have to set up the next cell. We put the text into a box again.

598 \setbox\z@\hbox\bgroup%
599 \strut%
600 }

\sd@dostack Actually typesetting the text in a cell is performed here. The macro is called as

\sd@dostack{〈height〉}{〈depth〉}{〈left-arc〉}{〈right-arc〉}

34

where 〈height〉 and 〈depth〉 are the height and depth of the vertical rules to put
around the item, and 〈left-arc〉 and 〈right-arc〉 are commands to draw rounded
edges on the left and right hand sides of the item.

The values for the height and depth are quite often going to be the height and
depth of box 0. Since we empty box 0 in the course of typesetting the row, we
need to cache the sizes on entry.

601 \def\sd@dostack#1#2#3#4{%
602 \@tempdima#1%
603 \@tempdimb#2%
604 \kern-\tw@\sdrulewidth%
605 \vrule\@height\@tempdima\@depth\@tempdimb\@width\tw@\sdrulewidth%
606 #3%
607 \sd@rule\hfill%
608 \sd@gap\sdtokskip%
609 \unhbox\z@%
610 \sd@gap\sdtokskip%
611 \sd@rule\hfill%
612 #4%
613 \vrule\@height\@tempdima\@depth\@tempdimb\@width\tw@\sdrulewidth%
614 \kern-\tw@\sdrulewidth%
615 \cr%
616 }

3.7.11 The rep environment

The rep environment is used for typesetting loops in the diagram. Again, we use
\halign for the typesetting. Loops are simpler than stacks, however, since there
are always two rows. We store both rows in box registers, and build the loop at
the end.

\rep Again, we use \newcommand to process the optional argument.
617 \newcommand\rep[1][t]{%

First, leave a gap on the left side.
618 \sd@gap\sdmidskip%

We’re not at base level any more, so disable linebreaking.
619 \begingroup\sd@basefalse%

Remember we’re going backwards now.
620 \ifsd@backwards\sd@backwardsfalse\else\sd@backwardstrue\fi%

Define \\ to separate the two parts of the loop.

621 \let\\\sd@loop%

Now check the argument, and use the appropriate type of box. In addition to
changing the typesetting, we must remember which way up to typeset the loop,
since the end code must always put the first argument on the baseline, with the
loop either above or below.

622 \if#1t%
623 \let\@tempa\vbox%
624 \sd@toptrue%
625 \else\if#1b%

35

626 \let\@tempa\vtop%
627 \sd@topfalse%
628 \else%
629 \sd@err{Bad position argument passed to loop}%
630 {The positioning argument must be ‘t’ or ‘b’. I have^^J%
631 assumed you meant to type ‘t’.}%
632 \let\@tempa\vbox%
633 \sd@toptrue%
634 \fi\fi%

Now we start the box.

635 \@tempa\bgroup%

The loop is by default empty, apart from a strut. This is put into box 1.

636 \setbox\tw@\copy\strutbox%

Now start typesetting the main text in box 0.

637 \setbox\z@\hbox\bgroup\strut%
638 }

\endrep The final code must first close whatever box was open.

639 \def\endrep{%
640 \egroup%

Now we typeset the loop, depending on which way up it was meant to be.
Again, this terrifying piece of code is a simple list of possibile values of our various
flags.

641 \ifsd@top%
642 \ifsd@round%
643 \sd@doloop\tw@\z@\relax\relax%
644 \sd@tlcirc\sd@trcirc{\sd@rlc\sd@blcirc}{\sd@llc\sd@brcirc}%
645 \else%
646 \sd@doloop\tw@\z@\relax\sd@downarr\relax\relax\relax\relax%
647 \fi%
648 \else%
649 \ifsd@round%
650 \sd@doloop\z@\tw@\relax\relax%
651 {\sd@rlc\sd@tlcirc}{\sd@llc\sd@trcirc}\sd@blcirc\sd@brcirc%
652 \else%
653 \sd@doloop\z@\tw@\sd@uparr\relax\relax\relax\relax\relax%
654 \fi%
655 \fi%

Close the vbox we opened.

656 \egroup%

Finally, we leave a gap before the next structure.

657 \endgroup\sd@gap\sdmidskip%
658 }

\sd@loop This macro handles the \\ command within a loop environment. We close the
current box, and start filling in box 1. We also redefine \\ to raise an error when
the \\ command is used again.

36

659 \def\sd@loop{%
660 \egroup%
661 \def\\{\sd@err{Too many \string\\\space commands in loop}\@ehc}%
662 \setbox\tw@\hbox\bgroup\strut%
663 }

\sd@doloop This is the macro which actually creates the \halign for the loop. It is called
with four arguments, as:

\sd@doloop{〈top-box 〉}{〈bottom-box 〉}{〈top-arrow〉}{〈btm-arrow〉}
{〈top-left-arc〉}{〈top-right-arc〉}{〈bottom-left-arc〉}{〈btm-right-arc〉}

The two 〈box 〉 arguments give the numbers of boxes to extract in the top
and bottom rows of the alignment. The 〈arrow〉 arguments specify characters
to typeset at the end of the top and bottom rows for arrows. The various 〈arc〉
arguments are commands which typeset arcs around the various parts of the items.

We calculate the height and depth of the two boxes, and store them in 〈dimen〉
registers, because the boxes are emptied before the right-hand rules are typeset.

Actually, the two rows of the alignment are typeset in a different macro: we
just pass the correct information on.

664 \def\sd@doloop#1#2#3#4#5#6#7#8{%
665 \@tempdima\dp#1\relax%
666 \@tempdimb\ht#2\relax%
667 \offinterlineskip%
668 \ialign{%
669 ##\cr%
670 \ifsd@round%
671 \sd@doloop@i#1#3\sd@topcirc\@tempdima{#5}{#6}%
672 \sd@doloop@i#2#4\@tempdimb\sd@botcirc{#7}{#8}%
673 \else%
674 \sd@doloop@i#1#3\sd@upper\@tempdima{#5}{#6}%
675 \sd@doloop@i#2#4\@tempdimb\sd@lower{#7}{#8}%
676 \fi%
677 }%
678 }

\sd@doloop@i Here we do the actual job of typesetting the rows of a loop alignment. The four
arguments are:

\sd@doloop@i{〈box 〉}{〈arrow〉}{〈rule-height〉}{〈rule-depth〉}
{〈left-arc〉}{〈right-arc〉}

The arrow position is determined by the \ifsd@backwards flag. The rest is
fairly simple.

679 \def\sd@doloop@i#1#2#3#4#5#6{%
680 \ifsd@backwards#2\fi%
681 \kern-\tw@\sdrulewidth%
682 \vrule\@height#3\@depth#4\@width\tw@\sdrulewidth%
683 #5%
684 \sd@rule\hfill%
685 \sd@gap\sdtokskip%
686 \unhbox#1%
687 \sd@gap\sdtokskip%

37

688 \sd@rule\hfill%
689 #6%
690 \vrule\@height#3\@depth#4\@width\tw@\sdrulewidth%
691 \ifsd@backwards\else#2\fi%
692 \kern-\tw@\sdrulewidth%
693 \cr%
694 }

3.8 The end
Phew! That’s all of it completed. I hope this collection of commands and envi-
ronments is of some help to someone.

695 〈/package〉
Mark Wooding, 17 May 1996

Appendix
A The GNU General Public Licence
The following is the text of the GNU General Public Licence, under the terms of
which this software is distrubuted.

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

A.1 Preamble
The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public License is intended to guarantee
your freedom to share and change free software—to make sure the software is free
for all its users. This General Public License applies to most of the Free Software
Foundation’s software and to any other program whose authors commit to using
it. (Some other Free Software Foundation software is covered by the GNU Library
General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our
General Public Licenses are designed to make sure that you have the freedom to
distribute copies of free software (and charge for this service if you wish), that you
receive source code or can get it if you want it, that you can change the software or
use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny
you these rights or to ask you to surrender the rights. These restrictions translate
to certain responsibilities for you if you distribute copies of the software, or if you
modify it.

38

For example, if you distribute copies of such a program, whether gratis or for
a fee, you must give the recipients all the rights that you have. You must make
sure that they, too, receive or can get the source code. And you must show them
these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer
you this license which gives you legal permission to copy, distribute and/or modify
the software.

Also, for each author’s protection and ours, we want to make certain that
everyone understands that there is no warranty for this free software. If the
software is modified by someone else and passed on, we want its recipients to
know that what they have is not the original, so that any problems introduced by
others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We
wish to avoid the danger that redistributors of a free program will individually
obtain patent licenses, in effect making the program proprietary. To prevent this,
we have made it clear that any patent must be licensed for everyone’s free use or
not licensed at all.

The precise terms and conditions for copying, distribution and modification
follow.

A.2 Terms and conditions for copying, distribution and
modification

0. This License applies to any program or other work which contains a notice
placed by the copyright holder saying it may be distributed under the terms
of this General Public License. The “Program”, below, refers to any such
program or work, and a “work based on the Program” means either the Pro-
gram or any derivative work under copyright law: that is to say, a work
containing the Program or a portion of it, either verbatim or with modifi-
cations and/or translated into another language. (Hereinafter, translation
is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.

Activities other than copying, distribution and modification are not covered
by this License; they are outside its scope. The act of running the Program
is not restricted, and the output from the Program is covered only if its
contents constitute a work based on the Program (independent of having
been made by running the Program). Whether that is true depends on what
the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code
as you receive it, in any medium, provided that you conspicuously and appro-
priately publish on each copy an appropriate copyright notice and disclaimer
of warranty; keep intact all the notices that refer to this License and to the
absence of any warranty; and give any other recipients of the Program a
copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you
may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it,
thus forming a work based on the Program, and copy and distribute such

39

modifications or work under the terms of Section 1 above, provided that you
also meet all of these conditions:

(a) You must cause the modified files to carry prominent notices stating
that you changed the files and the date of any change.

(b) You must cause any work that you distribute or publish, that in whole
or in part contains or is derived from the Program or any part thereof,
to be licensed as a whole at no charge to all third parties under the
terms of this License.

(c) If the modified program normally reads commands interactively when
run, you must cause it, when started running for such interactive use in
the most ordinary way, to print or display an announcement including
an appropriate copyright notice and a notice that there is no warranty
(or else, saying that you provide a warranty) and that users may redis-
tribute the program under these conditions, and telling the user how to
view a copy of this License. (Exception: if the Program itself is inter-
active but does not normally print such an announcement, your work
based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable
sections of that work are not derived from the Program, and can be rea-
sonably considered independent and separate works in themselves, then this
License, and its terms, do not apply to those sections when you distribute
them as separate works. But when you distribute the same sections as part of
a whole which is a work based on the Program, the distribution of the whole
must be on the terms of this License, whose permissions for other licensees
extend to the entire whole, and thus to each and every part regardless of
who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights
to work written entirely by you; rather, the intent is to exercise the right
to control the distribution of derivative or collective works based on the
Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under the
scope of this License.

3. You may copy and distribute the Program (or a work based on it, under
Section 2) in object code or executable form under the terms of Sections 1
and 2 above provided that you also do one of the following:

(a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange;
or,

(b) Accompany it with a written offer, valid for at least three years, to
give any third party, for a charge no more than your cost of physically
performing source distribution, a complete machine-readable copy of
the corresponding source code, to be distributed under the terms of

40

Sections 1 and 2 above on a medium customarily used for software
interchange; or,

(c) Accompany it with the information you received as to the offer to dis-
tribute corresponding source code. (This alternative is allowed only
for noncommercial distribution and only if you received the program
in object code or executable form with such an offer, in accord with
Subsection b above.)

The source code for a work means the preferred form of the work for making
modifications to it. For an executable work, complete source code means
all the source code for all modules it contains, plus any associated interface
definition files, plus the scripts used to control compilation and installation of
the executable. However, as a special exception, the source code distributed
need not include anything that is normally distributed (in either source or
binary form) with the major components (compiler, kernel, and so on) of
the operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the source
code from the same place counts as distribution of the source code, even
though third parties are not compelled to copy the source along with the
object code.

4. You may not copy, modify, sublicense, or distribute the Program except
as expressly provided under this License. Any attempt otherwise to copy,
modify, sublicense or distribute the Program is void, and will automatically
terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it.
However, nothing else grants you permission to modify or distribute the Pro-
gram or its derivative works. These actions are prohibited by law if you do
not accept this License. Therefore, by modifying or distributing the Program
(or any work based on the Program), you indicate your acceptance of this
License to do so, and all its terms and conditions for copying, distributing
or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Pro-
gram), the recipient automatically receives a license from the original licen-
sor to copy, distribute or modify the Program subject to these terms and
conditions. You may not impose any further restrictions on the recipients’
exercise of the rights granted herein. You are not responsible for enforcing
compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement
or for any other reason (not limited to patent issues), conditions are imposed
on you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of
this License. If you cannot distribute so as to satisfy simultaneously your
obligations under this License and any other pertinent obligations, then as

41

a consequence you may not distribute the Program at all. For example, if a
patent license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then the only
way you could satisfy both it and this License would be to refrain entirely
from distribution of the Program.
If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply and
the section as a whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any patents
or other property right claims or to contest validity of any such claims; this
section has the sole purpose of protecting the integrity of the free software
distribution system, which is implemented by public license practices. Many
people have made generous contributions to the wide range of software dis-
tributed through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing to dis-
tribute software through any other system and a licensee cannot impose that
choice.
This section is intended to make thoroughly clear what is believed to be a
consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries
either by patents or by copyrighted interfaces, the original copyright holder
who places the Program under this License may add an explicit geographi-
cal distribution limitation excluding those countries, so that distribution is
permitted only in or among countries not thus excluded. In such case, this
License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of
the General Public License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address
new problems or concerns.
Each version is given a distinguishing version number. If the Program spec-
ifies a version number of this License which applies to it and “any later
version”, you have the option of following the terms and conditions either of
that version or of any later version published by the Free Software Founda-
tion. If the Program does not specify a version number of this License, you
may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs
whose distribution conditions are different, write to the author to ask for
permission. For software which is copyrighted by the Free Software Founda-
tion, write to the Free Software Foundation; we sometimes make exceptions
for this. Our decision will be guided by the two goals of preserving the free
status of all derivatives of our free software and of promoting the sharing
and reuse of software generally.

NO WARRANTY

11. Because the Program is licensed free of charge, there is no war-
ranty for the Program, to the extent permitted by applicable law.

42

except when otherwise stated in writing the copyright holders
and/or other parties provide the program “as is” without war-
ranty of any kind, either expressed or implied, including, but not
limited to, the implied warranties of merchantability and fitness
for a particular purpose. The entire risk as to the quality and per-
formance of the Program is with you. Should the Program prove
defective, you assume the cost of all necessary servicing, repair or
correction.

12. In no event unless required by applicable law or agreed to in writ-
ing will any copyright holder, or any other party who may modify
and/or redistribute the program as permitted above, be liable to
you for damages, including any general, special, incidental or con-
sequential damages arising out of the use or inability to use the
program (including but not limited to loss of data or data being
rendered inaccurate or losses sustained by you or third parties or a
failure of the Program to operate with any other programs), even
if such holder or other party has been advised of the possibility of
such damages.

END OF TERMS AND CONDITIONS

A.3 Appendix: How to Apply These Terms to Your New
Programs

If you develop a new program, and you want it to be of the greatest possible use to
the public, the best way to achieve this is to make it free software which everyone
can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach
them to the start of each source file to most effectively convey the exclusion of
warranty; and each file should have at least the “copyright” line and a pointer to
where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>
Copyright (C) 19yy <name of author>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

43

If the program is interactive, make it output a short notice like this when it
starts in an interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate
parts of the General Public License. Of course, the commands you use may be
called something other than ‘show w’ and ‘show c’; they could even be mouse-clicks
or menu items–whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a “copyright disclaimer” for the program, if necessary. Here
is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may consider
it more useful to permit linking proprietary applications with the library. If this
is what you want to do, use the GNU Library General Public License instead of
this License.

Index
Numbers written in italic refer to the page where the corresponding entry is de-
scribed, the ones underlined to the code line of the definition, the rest to the code
lines where the entry is used.

Symbols
\" 116, 138, 178, 181, 189
\’ . 115
\- . 33
\/ 91, 93, 132
\< 136, 176, 180, 188, 207, 225, 228, 461
\> . 114
\@@left 435, 443
\@@par 202, 224
\@@right 436, 444
\@M . 471
\@circlefnt 320
\@depth 27, 205, 368, 605, 613, 682, 690
\@ehc 106, 661
\@firstoftwo 36
\@getcirc 317
\@gobble 71, 78, 238
\@height 27, 205, 368, 605, 613, 682, 690

\@ifnextchar
. . 41, 238, 239, 391, 426, 429, 472

\@ifstar 92, 471
\@ifundefined 53, 77
\@latex@error 106
\@let@token 192
\@linefnt 297, 302, 307, 313
\@makeother 13, 18, 19, 21, 101
\@minus 94, 194
\@namedef 424, 452, 465–470
\@newlistfalse 241
\@normalcr 218
\@plus 94, 194
\@sanitize 13, 20
\@santize 12
\@secondoftwo 38
\@tempa 528,

532, 539, 541, 623, 626, 632, 635

44

\@tempcnta 318, 320
\@tempdima 496–

499, 602, 605, 613, 665, 671, 674
\@tempdimb 603, 605, 613, 666, 672, 675
\@tempskipa 485, 486, 500
\@totalleftmargin 223
\@uscore 33, 48, 146
\@uscorefalse 4
\@uscoretrue 6
\@vhook 107, 109
\@width 27, 605, 613, 682, 690
\[. 235, 238
\[[. 5
\\ 113, 128, 218, 220, 414, 526, 621, 661
\] . 236, 239
\]] . 5
\^ 413, 449, 490
_ . 45, 47
\‘ 139, 175, 182, 190
\| 137, 177, 179, 187
\~ 47, 56, 104, 122, 461

\␣ 117, 129, 412, 448, 489

A
\act . 119, 146
\active 45, 69, 103,

120, 136–139, 179–182, 207, 228
\addspecial 9, 54, 175–178
\aftergroup 108
\alt . 5, 220
\AtBeginDocument 44

B
\baselineskip 204
\begin . 238

C
\cdots . 469
\ch . 118
\char 118, 297, 302, 307, 313, 320
\chardef 113–117
\cr 544, 615, 669, 693

D
\DeclareOption 2–4
\dimendef 253–257
\discretionary 374
\do 11, 16, 101
\doafter . 516
\dospecials 11, 17, 101

E
\end . 237

\endlist 243, 422
\endrep . 639
\endsdbox 493, 509, 520
\endstack 548
\endsyntdiag 417
\enspace 514, 519
environments:

grammar 5, 20
rep . 8
sdbox . 30
shortverb 2
stack . 8
synshorts 4
syntdiag* 6, 29
syntdiag 6, 27

\everypar 226, 227, 242
\ExecuteOptions 7

F
\font . 29
\fontdimen 29
\frenchspacing 87

G
\gr@endsyntdiag 237, 239
\gr@implitem 200, 229
\gr@leftsq 235, 238
\gr@rightsq 236, 239
\gr@setpar 221, 233, 237
grammar (environment) 5, 193
\grammarindent 195, 196, 211–213
\grammarlabel 5, 197, 201
\grammarparsep 193, 194, 216

H
\hb@xt@ 307, 313, 355, 362, 431
\hrule 27, 205, 368
\hyphenpenalty 411

I
\ialign 543, 668
\if@uscore 6, 43
\ifsd@backwards . . . 287, 620, 680, 691
\ifsd@base 284, 370
\ifsd@round 5, 530, 534,

553, 565, 577, 587, 642, 649, 670
\ifsd@top . 285, 554, 566, 578, 588, 641
\ifsd@toplayer 286, 550, 576
\ignorespaces 415, 450
\interlinepenalty 410
\item 206, 403
\itemindent 214
\itshape . 85

45

L
\labelsep 201, 213, 400
\labelwidth 211, 401
\langle . 85
\lccode 47, 56, 104, 122, 461
\leaders . 368
\leavevmode 24, 322, 433
\left 435, 437, 439, 443
\leftmargin 212, 398, 399
\linewidth 223
\list 210, 397
\listparindent 215
\lit . 3, 92
\lit@i . 92, 93
\litleft 87, 92, 154
\litright 87, 92, 157
\llap 220, 530, 534
\lower 308, 319, 499
\lowercase 48, 57, 109, 123, 461

M
\mbox 91, 93, 112
\MessageBreak 72, 79

N
\newcommand

. . . 85–90, 197, 271, 274, 522, 617
\newdimen 195, 250–252
\newenvironment 209
\newif 5, 6, 284–287
\newline . 479
\newskip 193, 245–249
\nobreak . . 373, 384, 407, 419, 475, 481
\noindent 405
\normalfont 85, 87

O
\offinterlineskip 542, 667

P
\PackageError 288
\PackageWarning 71, 78
\par 222, 234, 237
\parfillskip 404
\parsep . 216
\parshape 223
\parskip . 203
\penalty . 471
\ProcessOptions 8
\protect . 48

Q
\quad . 220

R
\raise 292, 302, 329, 337, 344, 352
\rangle . 86
\readupto 98, 127
\remspecial 10, 15, 64
\rep . 617
rep (environment) 8
\right 436, 438, 439, 444
\rightmargin 399
\rlap 567, 569

S
\sb . 40
\sbox . 201
\sd@arrow 289, 298, 303, 309, 314
\sd@backwardsfalse 620
\sd@backwardstrue 620
\sd@basefalse 447, 524, 619
\sd@basetrue 408
\sd@blcirc 324, 555, 569, 589, 644, 651
\sd@botcirc 257, 268, 269, 555, 557, 672
\sd@brcirc 324, 534, 555, 589, 644, 651
\sd@circ 316, 325, 333, 340, 348
\sd@doloop . . . 643, 646, 650, 653, 664
\sd@doloop@i . . 671, 672, 674, 675, 679
\sd@dostack 551, 555, 557, 560,

579, 581, 584, 589, 591, 594, 601
\sd@downarr 311, 646
\sd@endarr 438, 456
\sd@err 288, 536, 629, 661
\sd@gap 369, 486, 500, 523,

572, 608, 610, 618, 657, 685, 687
\sd@leftarr 300, 468
\sd@llc 354, 644, 651
\sd@loop 621, 659
\sd@lower

. 253, 264, 265, 368, 551, 560, 675
\sd@mid 255,

259–261, 263, 265, 267, 269,
292, 302, 329, 337, 344, 352, 498

\sd@newline 414, 471
\sd@nl@i 471, 472
\sd@nl@ii 472, 473
\sd@nl@iii 472–474
\sd@qarrow

. 375, 378, 406, 421, 445, 456, 459
\sd@rightarr . . . 295, 465–468, 478, 480
\sd@rlc 354, 644, 651
\sd@roundfalse 3
\sd@roundtrue 2
\sd@rule 356, 365, 368,

373, 379, 380, 384, 386, 407,
419, 420, 446, 454, 455, 475,
476, 481, 482, 607, 611, 684, 688

46

\sd@setsize 258, 396, 442
\sd@stackcr 526, 574
\sd@startarr 437, 445
\sd@tlcirc 324, 567, 581, 591, 644, 651
\sd@tok 516, 518
\sd@tok@i 390, 425, 502
\sd@tok@ii 390, 425, 507
\sd@topcirc 256, 266, 267, 579, 581, 671
\sd@topfalse 533, 627
\sd@toplayerfalse 597
\sd@toplayertrue 525
\sd@toptrue 529, 624, 633
\sd@trcirc 324, 530, 581, 591, 644, 651
\sd@uparr 305, 653
\sd@upper

. 254, 262, 263, 368, 551, 584, 674
\sdbox 484, 503, 512
sdbox (environment) 484
\sdcirclediam . . 251, 266, 268, 281,

317, 327, 330, 335, 336, 341,
345, 349, 351, 355, 356, 362, 365

\sdendspace 246, 276
\sdfinalskip . . 249, 279, 420, 455, 476
\sdindent 252, 282, 398
\sdlengths 9, 274, 394, 440
\sdmidskip 247, 277, 419,

446, 454, 475, 523, 572, 618, 657
\sdrulewidth

. 250, 262, 264, 280, 307, 313,
319, 326, 328, 334, 342, 343,
350, 530, 534, 567, 569, 604,
605, 613, 614, 681, 682, 690, 692

\sdsize 9, 271, 394, 440
\sdstartspace . 245, 275, 379, 407, 481
\sdtokskip 248,

278, 503, 512, 608, 610, 685, 687
\setlength 275–282
\shortverb 2, 52
shortverb (environment) 2
\skip . 372
\skip@ 371, 373, 384
\sloppy . 409
\small . 272
\spaceskip 94
\stack . 522
stack (environment) 8

\strut 202, 504, 513, 546, 599, 637, 662
\strutbox 259, 260, 636
\syn@assist 111, 144, 153, 162
\syn@shorts 135, 174
\syn@ttspace 67, 87, 94
\syn@ttspace@ 94, 95
\synshorts 4, 185
synshorts (environment) 4
\synshortsoff 4, 186, 491
\synt 3, 91, 198
\syntax 4, 192
\syntaxShortcuts

. 173, 192, 219, 390, 425, 515
\syntdiag 389
syntdiag (environment) 6, 389
syntdiag* (environment) 6, 424
\syntdiag@i 391, 393
\syntdiag@s@i 426, 428
\syntdiag@s@ii 429, 431
\syntdiag@s@iii 429, 431, 432
\syntleft 85, 91, 145
\syntright 85, 91, 148

T
\textbar 169, 220
\textunderscore 41, 51
\tok . 8, 511
\ttfamily 87
\ttthickspace 96
\ttthinspace 95, 97

U
\ulitleft 87, 92, 163
\ulitright 87, 92, 166
\underscore 23, 51
\unverb 2, 76
\usc@builtindischyphen 33, 41

V
\vadjust . 471
\verb . 67, 106
\verb@balance@group 105, 108
\verb@egroup 105, 107
\verb@eol@error 100
\vrule 605, 613, 682, 690
\vspace . 473

47

