Printing Z and Object-Z LATEX documents

Paul King Department of Computer Science University of Queensland Australia, 4072 king@batserver.cs.uq.oz.au May 29, 1990

1 Introduction

This note describes a package of IAT_EX macros for printing Z and Object-Z specifications. The macros and this note are based originally on Mike Spivey's zed.sty macros and documentation. The package does several related things for you:

- It loads extra fonts and defines mnemonics for the Z symbols they contain.
- It defines macros for some Z symbols (e.g. \rightarrow) which don't appear in any of our fonts.
- It fixes the way T_EX sets letters in mathematical formulas so that multi-character identifiers look better.
- It provides various brands of 'boxed mathematics' which appear in Z and Object-Z specifications.

The package is kept in a file oz.sty in the directory /usr/local/lib/tex/localinputs. This directory should be mentioned in your TEXINPUTS shell variable. To use the macros you just begin your LATEX document with something like:

```
\documentstyle[11pt,oz]{article}
```

2 Schema Boxes

The example below shows a schema on the left and what you need to say to get it on the right.

BirthdayBook	<pre>\begin{schema}{BirthdayBook} known: \pset NAME \\</pre>
	<pre>birthday: NAME \pfun DATE \ST known = \dom birthday \end{schema}</pre>

The command \ST (read 'Such That') is the same as the previously used command \where which has been kept as an alias for upward compatibility. If you want a schema with no name, just a horizontal rule at the top, use the schema* environment instead. You can set various parameters (see Section 7) to change the box style, for example:

 $BirthdayBook \cong [...]$

\$BirthdayBook \sdef \lsch ... \rsch\$

A generic schema is produced as follows.

Pool [RESOURCE]	<pre>\begin{genschema}{Pool}{RESOURCE} owner : RESOURCE \pfun USER \\ </pre>
$owner : RESOURCE \rightarrow USER$ $free : \mathbb{P} RESOURCE$	free : \pset RESOURCE \ST
$\frac{1}{(\text{dom owner}) \cup free} = RESOURCE$	<pre>(\dom owner) \uni free = RESOURCE \\ (\dom owner) \int free = \emptyset</pre>
$(\text{dom} owner) \cap free = \emptyset$	\end{genschema}

3 Axiomatic definitions

A 'liberal' axiomatic definition is produced as follows.

$ $ limit : \mathbb{N}	\begin{axdef} limit : \nat
	\ST
$limit \le 65536$	limit \leq 65536
	\end{axdef}

A 'generic' axiomatic definition is produced as follows.

	$\begin{gendef}{X,Y}$
= [X, Y] =	first : X \prod Y \tfun X
first : $X \times Y \to X$	\ST
$\forall x : X; \ y : Y \bullet first(x, y) = x$	<pre>\all x : X; y : Y \dot first(x,y) = x \omd(rendef)</pre>
$v w : H, g : I \circ for so(w, g) = w$	\end{gendef}

A 'unique' axiomatic definition is produced as follows.

	\begin{uniqdef}
	\pi : \real
$\pi:\mathbb{R}$	\ST
	\pi = 3.14159265\ldots
$\pi = 3.14159265\dots$	\end{uniqdef}

4 Object-Z Class Boxes

Object-Z allows class types to be defined using a box very similar to the schema box previously described. It allows the previously described boxed environments (as well as nested sub-classes) to be placed within a class box. In addition, special names can be used for some of the boxed-environments when they appear within a class box. The following example illustrates a class

definition.

$Shape _ \\ colour : Colour \\ perim : \mathbb{R} \\ \hline perim > 0 \\ \\ This class has 2 constants colour and \\ perim. \\ \end{cases}$	<pre>\begin{class}{Shape} _ \also colour : Colour \\ \begin{axdef} perim : \real \ST perim > 0 \end{axdef} \\ \begin{classcom} This class has 2 constants \$colour\$ and \$perim\$.</pre>
$x, y : \mathbb{R}$ $INIT$ $x = y = 0$	<pre>\end{classcom} \\ \begin{state} x, y : \real \end{state} \\</pre>
$ \begin{array}{c} x - y = 0 \\ \hline Translate \\ \Delta(x, y) \\ dx?, dy? : \mathbb{R} \\ \hline x' = x + dx? \\ y' = y + dy? \end{array} $	<pre>\begin{init} x = y = 0 \end{init} \\ \begin{op}{Translate} \Delta (x,y) \\ dx?, dy? : \real \ST x' = x + dx? \\</pre>
	y' = y + dy? \end{op} \end{class}

The classcom environment hasn't been seen before. It creates a paragraph of text with the same margins as used for schemas and other Z environments. It uses a special font intended for use when placing comments inside classes. A similar environment, zpar, uses the same margins but with the normal roman font.

The \begin{init} command is an abbreviation for \begin{schema}{\Init}. Similarly \begin{state} is a more meaningful synonym for \begin{schema*}.

You will be given LATEX warning messages if you try to use a state environment outside of a class box or if you try to place an environment such as syntax inside a class. You can ask for additional help in these cases using the normal LATEX h or H help commands. If you proceed with LATEXing, the macros will attempt to do the best they can to do what you probably intend, even though you are violating the recommended nesting guidelines.

5 Controlling the Spacing within Equations and Boxes

Most of the special Z symbols are defined in a way that allows T_EX to space them out correctly. Sometimes, however, you'll need to give T_EX a helping hand if you want it to get the spacing right. For example, to get *map f* you need to type **map\,f**. The ****, gives you a thin space: if this is omitted, the input **map f** gives *mapf*, because T_EX ignores spaces in math mode.

Sometimes it is useful to indent the left margin to emphasis the logical structure of the predicate. The command t1 does this by making the corresponding line in the output have one helping of indentation. As things get more nested, you can say t2, t3, and so on. But if you should ever get beyond t9, you'll need to use braces around the argument: $t{10}$, and you'd better look for some way to simplify your specification! These little tab marks might look different to normal tabs but are never the less convenient. They're short, and they don't get longer as the tabbing gets deeper, within reason, so they can be tucked in neatly on the left, well away from the maths. The size of 'helping' you get with t is determined by the zedtab parameter (see Section 7).

If you want a more powerful aligning mechanism than tabbing then you can use the margin stack as shown in the example below. The command M sets the future left margin to the current horizontal position and pushes the old value onto a margin stack. The command 0 resets the left margin to its previous value (which is popped off the stack).

	\begin{schema}{Test}
<i>Test</i>	x, y : \nat
$x, y: \mathbb{N}$	\ST
	$x + 1/x = 0 \lim y + 1/y = 0 $
$x + 1/x = 0 \Rightarrow y + 1/y = 0$	y = x \0 \\
y = x	\end{schema}

If a schema or other box contains more than one predicate below the line, it often looks better to add a tiny vertical space between them, as in this example:

	\begin{schema}{AddBirthday}
AddBirthday	\Delta BirthdayBook \\
$\Delta BirthdayBook$	n?: NAME \setminus
n?: NAME	d?: DATE
d?: DATE	\ST
	n? \nem known
$n? ot\in known$	\also
$birthday' = birthday \cup \{n? \mapsto d?\}$	<pre>birthday'=birthday \uni \{n? \map d?\}</pre>
$\bigcup_{i \in \mathcal{I}} u_{i} = u_{i} \cup u_{i} \cup$	\end{schema}

This is done with the command \also , which behaves syntactically like \T . The command \also is provided *instead* of the optional argument to $\$ which LATEX provides in other environments. If larger vertical spacing is required, the commands \Also and \ALSO may be used (giving 2 and 4 times as much space as \also respectively).

Normally, the contents of a schema box are kept on a single page. For large schemas it may be necessary to split the box across pages. You must specify which places are suitable for splitting using one of \zbreak, \Zbreak or \ZBREAK. If no split is performed at this point, a vertical space will be added as if the user had typed \also, \Also, or \ALSO respectively. You can also use the \znewpage command to force a page break within a box. (These breaking facilities will hopefully never be needed for schemas, but may become necessary for class specifications.)

6 Other Display Environments

The **zed** environment can be used to set multi-line formulas without an enclosing box: it is useful for given-set declarations, theorems, and the miscellaneous bits of mathematics that don't come in a box:

	\begin{zed}
$orall n:\mathbb{N}ullet$	\all n: \nat \dot \\
$n+n \in even.$	\t1 n+n \mem even.
· -	\end{zed}

The formula $\begin{zed} \dots \end{zed} may be abbreviated to [...]; the zed environment is a generalization of the displaymath environment of LATEX, so this redefinition of commands is fairly benign. Notice that the maths is set flush left on the same indentation as schemas and their friends. Here too you can use \also for a little extra space between lines.$

For algebraic-style proofs, there is the **argue** environment. This is like the **zed** environment, but the separation between lines is increased a little, and page breaks may occur between lines.

When the left-hand side is long this style wastes less space than the LATEX equarray style. The intended use is for arguments like this:

$$rev(append(cons(x, s), t)) = rev(cons(x, append(s, t))) = append(rev(append(s, t)), cons(x, nil)) = append(append(rev(t), rev(s)), cons(x, nil)) by hypothesis = append(rev(t), append(rev(s), cons(x, nil))) = append(rev(t), rev(cons(x, s))).$$

Here is the input:

The example below shows an inference rule (the optional argument to \derive gives a sidecondition of the rule):

 $\frac{\Gamma \vdash P}{\Gamma \vdash \forall x \bullet P} \quad [x \notin freevars(\Gamma)] \quad \begin{array}{c} \texttt{begin{infrule}} \\ \texttt{Gamma \shows P} \\ \texttt{derive[x \nem freevars(\Gamma)]} \\ \texttt{Gamma \shows \all x \dot P} \\ \texttt{end{infrule}} \end{array}$

The syntax environment is used for making displays like this:

EXPR :::	= IDENT	- identifier
	EXPR EXPR	- application
	$\lambda IDENT \bullet EXPR$	– lambda-abstraction.

from input like this:

This kind of thing is useful when you're describing a language, and it can also be used for data-type definitions as shown below. The optional final column was omitted below by leaving out the third &.

```
\begin{array}{rcl} TYPE &::= givenT \langle\!\langle NAME \rangle\!\rangle & & \begin{syntax} \\ TYPE & \def & givenT & lang NAME & lang & \\ powerT \langle\!\langle TYPE \rangle\!\rangle & & & \begin{syntax} \\ tupleT \langle\!\langle seq \ TYPE \rangle\!\rangle & & & \begin{syntax} \\ tupleT \langle\!\langle seq \ TYPE \rangle\!\rangle & & & \begin{syntax} \\ & & \begin{syntax} \\ tupleT & & \def & givenT & lang & NAME & lang & \\ \\ & & \begin{syntax} \\ tupleT & & \def & givenT & lang & NAME & lang & \\ \\ & & \begin{syntax} \\ & & \begin{syntax
```

This can be compared with the layout adopted by the UQ Z editor (version 1).

$TYPE ::= givenT \langle\!\langle NAME \rangle\!\rangle \\ \mid powerT \langle\!\langle TYPE \rangle\!\rangle$	\begin{zed} TYPE \ddef \M givenT \lang NAME \rang \\ \bbar powerT \lang TYPE \rang \\
$ \begin{array}{c} tupleT \langle\!\langle seq \ TYPE \rangle\!\rangle \\ schemaT \langle\!\langle IDENT \leftrightarrow TYPE \rangle\!\rangle \\ classT \langle\!\langle IDENT \leftrightarrow ClassAttr \rangle\!\rangle \end{array} $	<pre>\bbar tupleT \lang \seq TYPE \rang \\ \bbar schemaT \lang IDENT \ffun TYPE \rang \\ \bbar classT \lang IDENT \ffun ClassAttr \rang \0 \end{zed}</pre>

The sidebyside environment allows a display as shown in the first two columns below to be produced from the text of the third column. Note the use of the \comment command.

<pre>\begin{sidebyside} \begin{schema}{Schema} \comment*{declarations} \ST a < b \comment{pred-1} \\ aaaaa < bbbbb \comment{pred-2} \end{schema} \nextside \begin{zpar} This is a paragraph which has the same margins as the standard schemas do. \end{zpar} \end{sidebyside}</pre>

In fact, this environment was used throughout this note to display the examples beside the required input text. Incidentally, the above example shows that **sidebyside** environments can be nested; so what the author of this note typed to get the above display was:

This resulted in the first two columns being equally spaced and together taking up as much space as the third column. You can have more than 2 columns without nesting by specifying an optional parameter to sidebyside. For example, the display below has three equally spaced columns obtained using \begin{sidebyside}[3].

$BirthdayBook \ known : \mathbb{P} NAME \\birthday : NAME \rightarrow DATE$	$ \begin{array}{c} BirthdayBook ____\\ known : \mathbb{P} NAME \\ birthday : NAME \rightarrow DATE \end{array} $	Don't get carried away with sidebyside like this example does.
$known = dom \ birthday$	known = dom birthday	-

7 Style Parameters

\zedindent The (horizontal) indentation for mathematical text. By default, this is the same as \leftmargini, the indentation used for list environments.

- \zedleftsep The (horizontal) space between the vertical line on the left of schemas, etc., and the maths inside. The default is 1em.
- \zedtab The unit of indentation used by \t. The default is 2em.

\zedbar The length of the horizontal bar in the middle of a schema. The default is 8em.

- \leftschemas A declaration which makes schema names be set flush left. Use it in the document preamble.
- \zedlinethickness The thickness of the lines that make up schema and class boxes. You can change the thickness with a command such as \zedlinethickness=0.1pt. This may be useful if you are creating overhead slides.
 - 0.1pt _____
 - 0.4pt _____ (The default)
- \baselinestretch The spacing for the text part of your document. It doesn't change the spacing within Z environments. It's default value is 1. A command such as \def\baselinestretch{2} will make your text double spaced, but not your Z environments.
- \zedbaselinestretch The spacing for the Z environment part of your document. It's default value is 1.
- \zedsize The size of the material within the Z part of your document. It doesn't affect the remainder of your document. For example, \zedsize{\large} will give you large Z symbols and equations but will not affect the size of the surrounding text.
- \zedcornerheight The height of 'corners' that can be placed on the right hand side of the top and bottom lines of schema and class boxes. The default is 0em (i.e. no corners).

8 Symbols

. . _ _ _

1pt _

Multi-letter identifiers have been changed to look better than they do with vanilla IATEX: instead of *specifications*, you get *specifications*. The letters haven't been spread apart, and the ligature f_i has been used.

Almost all of the mathematical symbols of $\mathbb{L}^{A}T_{E}X$ can be used; some have been redefined usually to fix the spacing so that it is suitable for Z specifications. The commands for obtaining additional symbols are listed below. Sometimes more than one command may produce a symbol you require. You should use the one that seems to be designed for the context you have in mind. This is because the spacing around (and size of) symbols has been chosen for their typical context.

Throughout the lifetime of these macros a number of alternate control sequences for any symbol may have existed. A list of aliases has been set up so that old commands may still be used. It is recommended however that you stick to the recommended command names for symbols as these names may be supported by other tools. Within the table below non-recommended aliases are surrounded by brackets, e.g., (\power).

succ \succ
$= \neq = \neq$ $< \leq \leq \langle \rangle leq leqslant$
$\langle 2 \rangle \langle 10 \rangle$ (log (log) and $\rangle \geq \rangle \rangle$ (geq (log) and */+-*/+-
Logic

\wedge	\land (\wedge)
\vee	\lor (\vee)
\forall	\all (\forall)
Ξ	\exi (\exists)
\exists_1	\exione
∄_	\nexi (\nexists)
•	<pre>@ \dot (\spot)</pre>
\Rightarrow	imp (implies)
\Leftrightarrow	\iff
true	\true
false	\false
\mathbb{B}	\bool

\mathbf{Sets}

{ }	$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
Ø	\emptyset
{ }	\varemptyset
€	\mem (\in)
¢	\nem (\nmem \notin)
\mathbb{P}	<pre>\pset (\power)</pre>
\mathbb{F}	\fset (\finset)
$\mathbb{P}_1 \mathbb{F}_1$	\fsetone \psetone
U	\uni (\union)
\cap	\int (\inter)
	psubs (subset)
\subseteq	\subs (\subseteq)
\supset	\psups (\supset)
\supseteq	\sups (\supseteq)
×	\prod (\cross)
min n	nax\min \max
#	\#
\cup	\duni (\dunion)
\cap	\dint (\dinter)
	\upto

Relations and Functions

$\lambda \mu$	\lambda \mu
dom	\dom
ran	\ran
\triangleleft	\dres
\triangleleft	\dsub (\ndres)
\triangleright	\rres
\triangleright	\rsub (\nrres)
\oplus	\fovr
0	\cmp
9	\fcmp (\comp)
()	\limg \rimg
id	∖id
R^{\sim}	$R^{-1} R \in \mathbb{R}$
R^+	R^+ R\tcl
R^*	R^* R\rtcl
\mathbb{R}^k	R^k R\iter k
iter0R	iter \setminus , O \setminus , R
\mapsto	\map

\leftrightarrow	\rel	
\rightarrow	\tfun	(\fun)
\rightarrow	\tinj	(\inj)
\longrightarrow	\tsur	(\surj)
\rightarrow	\pfun	
\rightarrowtail	\pinj	
<u>→</u>	\psur	(\psurj)
\rightarrow	\ffun	
\rightarrowtail	\finj	
≻→	\bij	

Sequences

seq	∖seq
seq_1	\seqone
$\langle \rangle$	\emptyseq
$\langle \rangle$	\lseq \rseq
head tail	\head \tail
front last	\front \last
rev	\rev
next	\next
in	∖inseq
\subseteq	\prefix
suffix	\suffix
squash	\squash
	\cat
\sim /	\dcat
9/	\dcmp
$\oplus/$	\dovr
1	\ires
1	\sres \filter
partitions	\partitions
disjoint	\disjoint

Schemas

Δ	\Delta
$\equiv \Xi$	\equiv \Xi
pred	\pred
pre	\pre
post	\post
1	<pre>\zproject \project</pre>
\wedge	\zand
\vee	\zor
9 9	\zcmp (\semi)
9]	\zexi
\forall	\zall
-	\znot
	$\lambda $
/	\zfor
\Rightarrow	\zimp
\Leftrightarrow	∖zeq
\oplus	\zovr
\gg	\zpipe
θ	\theta
	\lsch \zbar \rsch

·· ·

Bags

	\lbag \rbag
bag	\bag
	\emptybag
items	\items
count	\bagcount
$ \boxplus $	\buni
in	\inbag

Definitions and Declarations

::=	\ddef
	\bbar
==	\defs
Ê	\sdef
\triangleq	\varsdef
$, ; : \langle \rangle$, ; : \lang \rang

Miscellaneous

[]	[]
()	()
! ?	! ?
let	\zlet
where	\zwhere
in	\zin
$\langle \rangle$	\lblot \rblot
iBump	\intern Bump
Init	\Init
E_{XIT}	\Exit

8.2 Other Special Notation Temporal Logic

	\always \uptilnow
	(\henceforth)
ОΘ	\atnext \atlast
$\diamond \diamond$	\eventually \previously

Proofs

Theorem	\TH
Proof	\PR
Lemma	\LE
	\qed (\ETH) \Qed
	\QED \BLACKQED
\vdash	\shows (\thrm)
Þ	\vDash
\supseteq	\refines
\Box	\weakrefine

Object Theory

\succ		\subclass \isa
\succeq		\weaksubclass \islikea
\prec		\supclass
$\stackrel{\scriptstyle \sim}{}$		\weaksupclass
≽		\hasa \instantiates
\prec		\instancein
		\subtype \subtypeeq
	\square	\suptype \suptypeeq

Orders

monotonic	\mono
total_order	\torder
partial_order	\porder

Word Styles

word	\word{word}
word	\keyword{word}
word	\boldword{word}
word	\underword{word}
word	\underkeyword{word}
word	\underboldword{word}
'word'	\String{word}
"word"	\STRING{word}
$a \ \underline{rel} \ b$	a \infix{rel} b

8.3 Special Letter Fonts Greek

α	\alpha
β	\beta
$\gamma \ \Gamma$	\gamma \Gamma
$\delta \Delta$	\delta \Delta
$\epsilon ~ \varepsilon$	\epsilon \varepsilon
ζ	\zeta
η	\eta
$\theta \ \vartheta \ \Theta$	\theta \vartheta \Theta
ι	\iota
$\kappa \varkappa$	\kappa \varkappa
λ Λ	\lambda \Lambda
μ	\mu
ν	\nu
$\xi \Xi$	\xi \Xi
$\pi \varpi \Pi$	\pi \varpi \Pi
ρϱ	\rho \varrho
$\sigma \varsigma \Sigma$	\sigma \varsigma \Sigma
au	\tau
vΥ	\upsilon \Upsilon
$\phi \ \varphi \ \Phi$	\phi \varphi \Phi
χ	\chi
$\psi \Psi$	\psi \Psi
$\omega \ \Omega$	\omega \Omega

Caligraphic

0	
\mathcal{A}	\mathbb{A}
${\mathcal B}$	\mathbb{B}
\mathcal{C}	\mathbb{C}
${\mathcal D}$	\mathbb{D}
${\mathcal E}$	$mathcal{E}$
${\cal F}$	\mathbf{F}
${\cal G}$	\mathbf{G}
${\cal H}$	\mathbb{H}
\mathcal{I}	\mathbb{I}
${\mathcal J}$	\mathbb{J}
${\cal K}$	$mathcal{K}$
\mathcal{L}	\mathbb{L}
${\mathcal M}$	$\mathbb{M} $
\mathcal{N}	$\mathbb{N} $
\mathcal{O}	$mathcal{0}$
${\cal P}$	\mathbb{P}
\mathcal{Q}	$mathcal{Q}$
\mathcal{R}	\mathbb{R}
S	$mathcal{S}$
\mathcal{T}	\mathbb{T}
U	\mathbb{U}
\mathcal{V}	\mathbb{V}
\mathcal{W}	\mathbb{W}
\mathcal{X}	\mathcal{X}
\mathcal{V}	\mathcal{Y}
$egin{array}{c} \mathcal{Y} \ \mathcal{Z} \end{array}$	\mathcal{Y} \mathcal{Z}
$egin{array}{c} \mathcal{Y} \ \mathcal{Z} \end{array}$	\mathcal{Y} \mathcal{Z}
Z	
Z	\mathcal{Z}
Z BlackB	\mathcal{Z}
Z BlackB A	\mathcal{Z} oard Bold \mathbb A
\mathcal{Z} BlackBo \mathbb{A} \mathbb{B}	\mathcal{Z} oard Bold \mathbb A \mathbb B
\mathcal{Z} BlackB \mathbb{A} \mathbb{B} \mathbb{C}	<pre>\mathcal{Z} oard Bold \mathbb A \mathbb B \mathbb C \mathbb D</pre>
\mathcal{Z} BlackB \mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D}	<pre>\mathcal{Z} oard Bold \mathbb A \mathbb B \mathbb C \mathbb D</pre>
\mathcal{Z} BlackBo \mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E}	<pre>\mathcal{Z} oard Bold \mathbb A \mathbb B \mathbb C \mathbb D \mathbb E</pre>
\mathcal{Z} BlackBo \mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F}	<pre>\mathcal{Z} oard Bold \mathbb A \mathbb B \mathbb C \mathbb D \mathbb E \mathbb F</pre>
\mathcal{Z} BlackB \mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G}	<pre>\mathcal{Z} oard Bold \mathbb A \mathbb B \mathbb C \mathbb D \mathbb E \mathbb F \mathbb F \mathbb G</pre>
\mathcal{Z} BlackB \mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G} \mathbb{H}	<pre>\mathcal{Z} oard Bold \mathbb A \mathbb B \mathbb C \mathbb C \mathbb E \mathbb E \mathbb F \mathbb G \mathbb H</pre>
Z BlackB A B C D E F G H I I	<pre>\mathcal{Z} oard Bold \mathbb A \mathbb B \mathbb C \mathbb D \mathbb E \mathbb F \mathbb F \mathbb H \mathbb I</pre>
Z BlackB A B C D E F G H I J	<pre>\mathcal{Z} oard Bold \mathbb A \mathbb B \mathbb C \mathbb D \mathbb E \mathbb F \mathbb F \mathbb G \mathbb H \mathbb I \mathbb J</pre>
Z BlackB A B C D E F G H I I J K	<pre>\mathcal{Z} oard Bold \mathbb A \mathbb C \mathbb C \mathbb D \mathbb E \mathbb F \mathbb F \mathbb G \mathbb H \mathbb I \mathbb J \mathbb K</pre>
Z BlackBo A B C D E F G H I J K L	<pre>\mathcal{Z} oard Bold \mathbb A \mathbb B \mathbb C \mathbb C \mathbb E \mathbb F \mathbb F \mathbb G \mathbb H \mathbb I \mathbb J \mathbb K \mathbb L</pre>
Z BlackBo A B C D E F G H I J K L M	<pre>\mathcal{Z} oard Bold \mathbb A \mathbb B \mathbb C \mathbb C \mathbb E \mathbb F \mathbb G \mathbb H \mathbb I \mathbb I \mathbb L \mathbb L \mathbb K</pre>
Z BlackB A B C D E F G H I J K L M N	<pre>\mathcal{Z} oard Bold \mathbb A \mathbb B \mathbb C \mathbb C \mathbb E \mathbb F \mathbb F \mathbb H \mathbb I \mathbb I \mathbb J \mathbb K \mathbb K \mathbb M \mathbb N</pre>
Z BlackB A B C D E F G H I J K L M N O	<pre>\mathcal{Z} oard Bold \mathbb A \mathbb B \mathbb C \mathbb C \mathbb D \mathbb E \mathbb F \mathbb G \mathbb H \mathbb I \mathbb J \mathbb K \mathbb L \mathbb N \mathbb N \mathbb 0</pre>
Z BlackB A B C D E F G H I J K L M N O P	<pre>\mathcal{Z} oard Bold \mathbb A \mathbb C \mathbb C \mathbb C \mathbb E \mathbb F \mathbb F \mathbb G \mathbb H \mathbb I \mathbb J \mathbb K \mathbb L \mathbb N \mathbb N \mathbb 0 \mathbb P</pre>
Z BlackB A B C D E F G H I J K L M N O P Q	<pre>\mathcal{Z} oard Bold \mathbb A \mathbb C \mathbb C \mathbb C \mathbb E \mathbb F \mathbb F \mathbb G \mathbb H \mathbb I \mathbb I \mathbb K \mathbb L \mathbb N \mathbb N \mathbb Q</pre>
Z BlackBo A B C D E F G H I J K L M N O P Q R	<pre>\mathcal{Z} oard Bold \mathbb A \mathbb C \mathbb C \mathbb C \mathbb E \mathbb F \mathbb F \mathbb G \mathbb H \mathbb I \mathbb I \mathbb L \mathbb N \mathbb N \mathbb P \mathbb Q \mathbb R</pre>
Z BlackBo A B C D E F G H I J K L M N O P Q R S T U	<pre>\mathcal{Z} oard Bold \mathbb A \mathbb C \mathbb C \mathbb C \mathbb E \mathbb F \mathbb G \mathbb H \mathbb I \mathbb J \mathbb L \mathbb N \mathbb N \mathbb P \mathbb Q \mathbb R \mathbb R \mathbb R</pre>
Z BlackBo A B C D E F G H I J K L M N O P Q R S T U	<pre>\mathcal{Z} oard Bold \mathbb A \mathbb B \mathbb C \mathbb C \mathbb F \mathbb F \mathbb G \mathbb H \mathbb I \mathbb I \mathbb L \mathbb K \mathbb N \mathbb N \mathbb R \mathbb S \mathbb T</pre>
Z BlackBo A B C D E F G H I J K L M N O P Q R S T	<pre>\mathcal{Z} oard Bold \mathbb A \mathbb B \mathbb C \mathbb C \mathbb C \mathbb F \mathbb F \mathbb H \mathbb H \mathbb I \mathbb I \mathbb L \mathbb K \mathbb N \mathbb N \mathbb N \mathbb P \mathbb Q \mathbb R \mathbb R \mathbb I \mathbb U </pre>

 \mathbb{X}

Y

 \mathbb{Z}

\mathbb X

\mathbb Y

\mathbb Z

Miscellaneous

た ⇒ ゔヿ ヿ ヿ ℃	\hslash \hbar \backepsilon \eth \beth
ב	\gimel
٦	\daleth
С	\complement
ד א	\intercal
х	\aleph
∇	\nabla
\hbar	\hbar
ı	\imath
\mathcal{I}_ℓ	\jmath \ell
e P	/wp
R	\wp \Re
3î T	\Im
ΰ	\mho
F	\digamma
	C C
8.4	Shapes
	\Box
	\square
	\blacksquare
\diamond	\diamond
$\Box \Box \bullet \diamond \diamond \diamond \bullet \land \lor \bullet \bullet \lor \bullet \bullet$	\Diamond
\diamond	\lozenge
•	\blacklozenge
\triangleright	\vartriangleright
	\vartriangleleft
•	\blacktriangledown
	\blacktriangleright \blacktriangleleft
^	\vartriangle
	\blacktriangle
∇	\triangledown
\triangle	\triangle
\triangleleft	\triangleleft
▷ △ ▽ ♣ ◇ ♡ ♠ *	\times
\triangle	\bigtriangleup
\bigtriangledown	\bigtriangledown
Å	\clubsuit
\bigotimes_{m}	\diamondsuit
	\heartsuit
Ţ	\spadesuit \ast
*	\star
Å	\maltese
₩ ★ () ∘	\bigstar
Õ	\bigcirc
0	\circ
•	\bullet
	\centerdot

•	\(cdot
		-

··· \cdots

... \ldots

- : \vdots
- ·.. \ddots

Circled Operations

(S)	\circledS
0	\circledcirc
*	\circledast
Θ	\circleddash
(R)	\circledR

- © \copyright
- ⊕ \fovr
- \ominus \ominus
- ⊗ \otimes⊘ \oslash
- ⊘ \oslash
 ⊙ \odot
- 0 (0000

Boxed operators

$\overline{}$	\boxdot
\blacksquare	\boxplus
\boxtimes	\boxtimes
\square	\boxminus

8.5 Arrow Symbols

Left Arrows

\leftarrow \gets ← \Leftarrow \Leftarrow \hookleftarrow \leftarrow _ \leftharpoonup \leftharpoondown \longleftarrow ← \Longleftarrow ⇐= \twoheadleftarrow —≫ \leftleftarrows \equiv \leftarrowtail \leftarrow \Lleftarrow ∖ \leftarrow \nleftarrow \nLeftarrow #

Right Arrows

\rightarrow	\rightarrow \to
\Rightarrow	\Rightarrow
\mapsto	\map
\longmapsto	\longmapsto
\hookrightarrow	\hookrightarrow
<u>`</u>	\rightharpoonup

- \neg \rightharpoondown
- \sim \leadsto
- \longrightarrow \longrightarrow
- \implies \Longrightarrow
- \Rightarrow \rightrightarrows
- \rightarrowtail \rightarrowtail
- √→ \rightsquigarrow
- \Rightarrow \Rrightarrow
- → \nrightarrow
- ⇒ \nRightarrow

Left Right Arrows

- \leftrightarrow \leftrightarrow \Leftrightarrow \Leftrightarrow \rightleftharpoons \rightleftharpoons \longleftrightarrow \longleftrightarrow \Leftrightarrow \Longleftrightarrow \rightleftharpoons \rightleftharpoons \leftrightharpoons \Rightarrow $\stackrel{\longleftarrow}{\longrightarrow}$ \leftrightarrows \rightleftharpoons \rightleftarrows \leftrightsquigarrow \longleftrightarrow
- ↔ \nleftrightarrow

Up Down Arrows

\uparrow
\Uparrow
\downarrow
\Downarrow
\updownarrow
\Updownarrow
\upuparrows
\downdownarrows
\upharpoonright
\downharpoonright
\upharpoonleft
\downharpoonleft

Miscellaneous

7	\nearrow
\searrow	\searrow
\checkmark	\swarrow
5	\nwarrow

- ♂ \circlearrowleft
- └ \Lsh
- r ∧Rsh
- \leftrightarrow \looparrowleft
- \hookrightarrow \looparrowright
- \sim \curvearrowleft
- \sim \curvearrowright

8.6	Relations	0	\multimap
		\propto	\propto
\ll	\11	C	\varpropto
\gg	\gg	\gtrsim	\lesssim
~~~	\lll \llless	Y 8/ 8/ 2/	\gtrsim
>>>>	\ggg \gggtr	$\leq 2$	\lessapprox
	\sqsubset		\gtrapprox
	\sqsupset	$\prec$	\xprec
	\sqsubseteq	$\succ$	\xsucc
	\sqsupseteq	$\preceq$	\preceq
$\ni$	\owns	$\succeq$	\succeq
$\vdash$	\vdash	או אז אז אז אא שא	\precsim
$\Vdash$	\Vdash	$\succ$	\succsim
Þ	\vDash	Ж Ж	\precapprox
-	\dashv	s S S	\succapprox
II⊢	\Vvdash	<	eqslantless
Þ	\models	≥	\eqslantgtr
¥	\nvdash	$\stackrel{\scriptstyle \prec}{\prec}$	\curlyeqprec
⊮	\nVdash	$\neq$	\curlyeqsucc
¥	\nvDash	$\prec$	\preccurlyeq
¥	\nVDash	$\succcurlyeq$	\succcurlyeq
$\perp$	\perp		\leqq
$\sim$	\sim	≤ ≥ ≪	\geqq
$\simeq$	\simeq	$\leqslant$	\leqslant
$\overline{\sim}$	\eqsim	$\geq$	\geqslant
$\sim$	\backsim	≶	<b>\lessgtr</b>
SI	\backsimeq	$\geq$	\gtrless
$\sim$	\thicksim	≫ ≪	<b>\lesseqgtr</b>
$\nsim$	\nsim	$\stackrel{>}{<}$	\ atroal oss
$\approx$	\approx		\gtreqless
$\not\approx$	\napprox	<pre></pre>	<b>\lesseqqgtr</b>
$\approx$	\thickapprox		<b>\</b> . 7
$\approx$	\approxeq		\gtreqqless
$\asymp$	\asymp	<# >#	\lvertneqq
$\cong$	\cong	$\geq$	\gvertneqq
≇	\ncong	≰	\nleq
÷	\doteq	≱	\ngeq
÷	\Doteq \doteqdot	×	\nless
≓	\risingdotseq	×	\ngtr
÷.	\fallingdotseq	$\prec$	\nprec
< 、	\lessdot	¥	\nsucc
$\geq$	\gtrdot	≨	\lneqq
•	\eqcirc	$\geq$	\gneqq
<u> </u>	\circeq	¥	\nleqslant
	\bumpeq	¥	\ngeqslant
≎	\Bumpeq	$\lneq$	\lneq
≜	\triangleq		

$\geq$	\gneq
, ∠	\npreceq
¥_	\nsucceq
$\widetilde{\mathcal{A}}$	\precnsim
74	\succnsim
$\lesssim$	\lnsim
$\geq$	\gnsim
¥	\nleqq
≱	\ngeqq
$\overleftrightarrow$	\precneqq
≻≠	\succneqq
¥¥	\precnapprox
₩	\succnapprox
<i>≨</i> ₽	\lnapprox
>≉	\gnapprox
ē	\Subset
∋	\Supset
$\subseteq$	\subseteqq
	\supseteqq
147 JH IIO IIU @ @ \$\$V \$\$V \$\$X \$\$X \$\$X \$\$X \$\$V \$\$V \$\$V \$\$V	\nsubseteqq
₽	\nsupseteqq
	\subsetneqq
$\supseteq_{\neq}$	\supsetneqq
$\subsetneq$	\subsetneq
$\supseteq$	\supsetneq
⊈	\nsubseteq
⊉	\nsupseteq
$\geq$	\trianglerighteq
$\triangleleft$	\trianglelefteq
,	\ntrianglerighteq
⊉	\ntrianglelefteq
A	\ntriangleleft
₽	\ntriangleright
Q	\between
	\vert \mid
	\  \Vert \parallel
	\interleave
I	\shortmid
II	\shortparallel
  L	\shortinterleave
H F	\nparallel
ł	\nmid
ł	\nshortmid \nshortparallel
Ħ	/nonor chararrer

# 8.7 Binary Operations

人	\curlywedge
Ŷ	\curlyvee
⊻ ⊼	\veebar
	\barwedge
$\bar{\wedge}$	\doublebarwedge
±	\pm
Ŧ	\mp
×	\times
$\ltimes$	\ltimes
$\rtimes$	\rtimes
$\succ$	\leftthreetimes
$\checkmark$	\rightthreetimes
*	\divideontimes
÷	\divides
$\oplus$	\uplus
Π	\sqcap
$\sqcup$	\sqcup
$\mathbb{U}$	\Cup \doublecup
M	\Cap \doublecap
\	\backslash
\	\setminus
$\sim$	\smallsetminus
2	\wr
$\lhd$	\lhd
$\triangleright$	\rhd
$\bigtriangledown$	\unlhd
$\geq$	\unrhd
1	\restriction
Ш	\amalg
Т	\top
$\perp$	\bot
$\smile$	\smallsmile
	\smallfrown
$\smile$	\smile
	\frown
ф ;	\pitchfork
÷	\dotplus
	\Join
$\bowtie$	\bowtie

### 8.8 Miscellaneous Symbols

†	\dagger
	\ddagger
Ś	\sectionsymbol
‡ § ¶	∖P
L	\angle
4	\measuredangle
$\triangleleft$	\sphericalangle
1	\prime
١	\backprime
	\surd
$\sqrt{\int}$	\smallint
þ	\flat
4	\natural
$\# \partial$	\sharp
$\partial$	\partial
$\infty$	\infty
¥	\yen
<i>.</i> .	\therefore
·:·	\because
$\checkmark$	\checkmark

### 8.9 Variable-sized Symbols

These symbols come in two sizes which do not vary with the point size of your font. The big size can be obtained by preceding the symbol command with the command \displaystyle.

 $\sum \sum$ \sum ΠП \product ШII \coprod **f** \integral ∮∮ \oint  $\cap\cap$ \bigcap υH \bigcup \bigsqcup VV \bigvee  $\wedge \Lambda$ \bigwedge  $\odot$ \bigodot  $\otimes$  (X \bigotimes ⊕Ĥ \bigoplus  $\forall +$ \biguplus

#### 8.10 Delimiters

These symbols can be made large to surround large formula. E.g.,

1	n	
	$\sum x^i$	
	i=1	

was generated using

\left\lfloor...\right\rfloor

( )	()
{ }	\{ \}
	\lfloor \rfloor
[ ]	\lceil \rceil
$\langle \rangle$	\langle \rangle
ГЛ	\ulcorner \urcorner
LJ	\llcorner \lrcorner
$\uparrow$	\uparrow
$\downarrow$	\downarrow
$\uparrow$	\updownarrow
↑	\Uparrow
$\Downarrow$	\Downarrow

\Updownarrow

\$

#### 8.11 Math Accents

$\hat{a}$	$hat{a}$
$\widehat{a}$	\widehat{a}
$\widehat{aa}$	\widehat{aa}
$\widehat{aaa}$	\widehat{aaa}
$\tilde{a}$	\tilde{a}
$\widetilde{a}$	\widetilde{a}
$\widetilde{aa}$	\widetilde{aa}
$\widetilde{aaa}$	\widetilde{aaa}
ă	\check{a}
$\breve{a}$	\breve{a}
á	$\acute{a}$
à	$grave{a}$
$\overline{a}$	\bar{a}
$\vec{a}$	\vec{a}
$\dot{a}$	$\det{a}$
$\ddot{a}$	\ddot{a}

### 8.12 Size Commands

 $\mu$   $\mu$   $\mu$  /mu \zsmall\mu \zSmall\mu  $\mu$   $\mu$   $\mu$  / $\mu$  \zbig\mu \zBig\mu \zBig\mu