1

Printing Z and Object-Z ETEX documents

Paul King

Department of Computer Science
University of Queensland
Australia, 4072
king@batserver.cs.uq.oz.au

May 29, 1990

Introduction

This note describes a package of XTEX macros for printing Z and Object-Z specifications. The
macros and this note are based originally on Mike Spivey’s zed.sty macros and documentation.
The package does several related things for you:

It loads extra fonts and defines mnemonics for the Z symbols they contain.
It defines macros for some Z symbols (e.g.) which don’t appear in any of our fonts.

It fixes the way TEX sets letters in mathematical formulas so that multi-character identifiers
look better.

It provides various brands of ‘boxed mathematics’ which appear in Z and Object-Z speci-
fications.

The package is kept in a file oz.sty in the directory /usr/local/lib/tex/localinputs.
This directory should be mentioned in your TEXINPUTS shell variable. To use the macros you
just begin your I TEX document with something like:

2

\documentstyle[11pt,oz]{article}

Schema Boxes

The example below shows a schema on the left and what you need to say to get it on the right.

\begin{schema}{BirthdayBook}

— BirthdayBook known: \pset NAME \\
known : P NAME birthday: NAME \pfun DATE
birthday : NAME -+ DATE \ST

known = \dom birthday
known = dom birthday \end{schema}

The command \ST (read ‘Such That’) is the same as the previously used command \where
which has been kept as an alias for upward compatibility. If you want a schema with no name,
just a horizontal rule at the top, use the schema* environment instead. You can set various
parameters (see Section 7) to change the box style, for example:

BirthdayBook = [] $BirthdayBook \sdef \lsch ... \rsch$

A generic schema is produced as follows.

\begin{genschema}{Pool}{RESOURCE}

— Pool [RESOURCE)] owner : RESOURCE \pfun USER \\
owner : RESOURCE - USER free : \pset RESOURCE
free : P RESOURCE \ST
(\dom owner) \uni free = RESOURCE \\
(dom owner) U free = RESOURCE (\dom owner) \int free = \emptyset
(dom owner) N free = & \end{genschema}

3 Axiomatic definitions

A ‘liberal’ axiomatic definition is produced as follows.

\begin{axdef}

‘ limit : N limit : \nat
\ST

| limit < 65536 limit \leq 65536
\end{axdef}

A ‘generic’ axiomatic definition is produced as follows.

\begin{gendef }{X,Y}

—[X, Y] first : X \prod Y \tfun X
first : X x YV — X \ST
\all x : X; y : Y \dot first(x,y) = x
Vz:X; y:Y efirst(z,y) ==z \end{gendef}

A ‘unique’ axiomatic definition is produced as follows.

\begin{uniqdef}
\pi : \real
m:R \ST
\pi = 3.14159265\1dots

4 Object-Z Class Boxes

Object-Z allows class types to be defined using a box very similar to the schema box previously
described. It allows the previously described boxed environments (as well as nested sub-classes)
to be placed within a class box. In addition, special names can be used for some of the boxed-
environments when they appear within a class box. The following example illustrates a class

definition.

\begin{class}{Shape}
__Shape \also
. colour : Colour \\
colour : Colour \begin{axdef}
perim : R perim : \real
; \ST
perim > 0 perim > O
This class has 2 constants colour and \end{axdef} \\
erim \begin{classcom}
p ’ This class has 2 constants
$colour$ and $perim$.
z,y: R \end{classcom} \\
\begin{state}
_INIT X, y : \real
r=y=0 \end{state} \\
\begin{init}
__ Translate ’\{ =d3{’.=‘2} W
end{ini
?(;575/)? . \begin{op}{Translate}
ey \Delta (x,y) \\
2 =1z + dz? dx?, dy? : \real
!
Y Y Y x’ = x + dx? \\
y’ =y + dy?
\end{op}
\end{class}

The classcom environment hasn’t been seen before. It creates a paragraph of text with the
same margins as used for schemas and other Z environments. It uses a special font intended for
use when placing comments inside classes. A similar environment, zpar, uses the same margins
but with the normal roman font.

The \begin{init} command is an abbreviation for \begin{schema}{\Init}. Similarly
\begin{state} is a more meaningful synonym for \begin{schemax*}.

You will be given IXTEX warning messages if you try to use a state environment outside of
a class box or if you try to place an environment such as syntax inside a class. You can ask
for additional help in these cases using the normal KTEX h or H help commands. If you proceed
with ¥ TEXing, the macros will attempt to do the best they can to do what you probably intend,
even though you are violating the recommended nesting guidelines.

5 Controlling the Spacing within Equations and Boxes

Most of the special Z symbols are defined in a way that allows TEX to space them out correctly.
Sometimes, however, you’ll need to give TEX a helping hand if you want it to get the spacing
right. For example, to get map f you need to type map\,f. The \, gives you a thin space: if
this is omitted, the input map f gives mapf, because TEX ignores spaces in math mode.

Sometimes it is useful to indent the left margin to emphasis the logical structure of the
predicate. The command \t1 does this by making the corresponding line in the output have
one helping of indentation. As things get more nested, you can say \t2, \t3, and so on. But
if you should ever get beyond t9, you’ll need to use braces around the argument: \t{10}, and
you’d better look for some way to simplify your specification! These little tab marks might look
different to normal tabs but are never the less convenient. They’re short, and they don’t get
longer as the tabbing gets deeper, within reason, so they can be tucked in neatly on the left,
well away from the maths. The size of ‘helping’ you get with \t is determined by the \zedtab
parameter (see Section 7).

If you want a more powerful aligning mechanism than tabbing then you can use the margin
stack as shown in the example below. The command \M sets the future left margin to the current
horizontal position and pushes the old value onto a margin stack. The command \O resets the
left margin to its previous value (which is popped off the stack).

\begin{schema}{Test}
_ Test X, ¥ : \nat
z,y: N \ST
x + 1/x = 0 \imp \M y + 1/y = 0 \\
z+1/z=0=>y+1/y=0 y = x \0 \\
y=z \end{schema}

If a schema or other box contains more than one predicate below the line, it often looks
better to add a tiny vertical space between them, as in this example:

\begin{schema}{AddBirthday}

__AddBirthday \Delta BirthdayBook \\
A BirthdayBook n?: NAME \\
n?: NAME d7: DATE
d?: DATE \ST
n? \nem known
n? & known \also
birthday' = birthday U {n? — d7} birthday’=birthday \uni \{n? \map d7\}
i : \end{schema}

This is done with the command \also, which behaves syntactically like \ST. The command
\also is provided instead of the optional argument to \\ which IETEX provides in other envi-
ronments. If larger vertical spacing is required, the commands \Also and \ALSO may be used
(giving 2 and 4 times as much space as \also respectively).

Normally, the contents of a schema box are kept on a single page. For large schemas it may be
necessary to split the box across pages. You must specify which places are suitable for splitting
using one of \zbreak, \Zbreak or \ZBREAK. If no split is performed at this point, a vertical
space will be added as if the user had typed \also, \Also, or \ALSO respectively. You can also
use the \znewpage command to force a page break within a box. (These breaking facilities will
hopefully never be needed for schemas, but may become necessary for class specifications.)

6 Other Display Environments

The zed environment can be used to set multi-line formulas without an enclosing box: it is useful
for given-set declarations, theorems, and the miscellaneous bits of mathematics that don’t come
in a box:

\begin{zed}
Vn:Ne \all n: \nat \dot \\
n 4+ n € even. \t1 n+n \mem even.
\end{zed}
The formula \begin{zed} ... \end{zed} may be abbreviated to \[... \]; the zed en-

vironment is a generalization of the displaymath environment of KXTEX, so this redefinition of
commands is fairly benign. Notice that the maths is set flush left on the same indentation as
schemas and their friends. Here too you can use \also for a little extra space between lines.
For algebraic-style proofs, there is the argue environment. This is like the zed environment,
but the separation between lines is increased a little, and page breaks may occur between lines.

When the left-hand side is long this style wastes less space than the IXTEX egnarray style. The
intended use is for arguments like this:

rev(append(cons(z, s),t))
= rev(cons(z, append(s,t)))
= append(rev(append(s, t)), cons(z, nil))

append(append(rev(t), rev(s)), cons(z, nil)) by hypothesis

(
append(rev(t), append(rev(s), cons(z, nil)))
append(rev(t), rev(cons(z, s))).

Here is the input:

\begin{argue}
rev(append(cons(x,s),t)) \\
\t1 = rev(cons(x,append(s,t))) \\
\t1 = append(rev(append(s,t)),cons(x,nil)) \\
\t1 = append (append(rev(t) ,rev(s)),cons(x,nil))
\quad \hbox{by hypothesis} \\
\t1 = append(rev(t) ,append(rev(s),cons(x,nil))) \\
\t1 = append(rev(t) ,rev(cons(x,s))).

\end{argue}

The example below shows an inference rule (the optional argument to \derive gives a side-
condition of the rule):

\begin{infrule}
I'HP \Gamma \shows P
[T ¢ freevars(r)] \derive[x \nem freevars(\Gamma)]
'-VzeP \Gamma \shows \all x \dot P
\end{infrule}

The syntax environment is used for making displays like this:

EXPR ::= IDENT — identifier
| EXPR EXPR — application
| MIDENT ¢ EXPR - lambda-abstraction.

from input like this:

\begin{syntax}
EXPR & \ddef & IDENT & identifier \\
& \bbar & EXPR\;EXPR & application \\
& \bbar & \lambda IDENT \dot EXPR & lambda-abstraction.
\end{syntax}

This kind of thing is useful when you're describing a language, and it can also be used for
data-type definitions as shown below. The optional final column was omitted below by leaving
out the third &.

\begin{syntax}
TYPE := givenT{NAME)) TYPE & \ddef & givenT \lang NAME \rang \\
powerT{{ TYPE)) & \bbar & powerT \lang TYPE \rang \\
tuple T ((seq TYPE) & \bbar & tupleT \lang \seq TYPE \rang \\

& \bbar & schemaT \lang IDENT \ffun TYPE \rang \\
& \bbar & classT \lang IDENT \ffun ClassAttr \rang
\end{syntax}

schemaT{(IDENT + TYPE))
classT{(IDENT - ClassAttr))

This can be compared with the layout adopted by the UQ Z editor (version 1).

\begin{zed}
TYPE := givenT{{NAME)) TYPE \ddef \M givenT \lang NAME \rang \\
| powerT (TYPE)) \bbar powerT \lang TYPE \rang \\
|tupl€]7«seq77TYTU?» \bbar tupleT \lang \seq TYPE \rang \\

\bbar schemaT \lang IDENT \ffun TYPE \rang \\

|86h67na7j IDENT + TYPE)) \bbar classT \lang IDENT \ffun ClassAttr \rang \O
| classT({(IDENT + ClassAttr)) \end{zed}

The sidebyside environment allows a display as shown in the first two columns below to be
produced from the text of the third column. Note the use of the \comment command.

\begin{sidebyside}
decorat This s a para- (e eetions)
[Laratlons] graph which has \ST
a < b the same margins a<hb \comment{pred—l} \\
[pred-1] as the standard aaaaa < bbbbb \comment{pred-2}
aaaaa < bbbbb schemas do. \end{schema}
[pred-2] \nextside
\begin{zpar}

This is a paragraph which has the same
margins as the standard schemas do.
\end{zpar}

\end{sidebyside}

In fact, this environment was used throughout this note to display the examples beside the
required input text. Incidentally, the above example shows that sidebyside environments can
be nested; so what the author of this note typed to get the above display was:

\begin{sidebyside}
\begin{sidebyside}

\nextside

\end{sidebyside}
\nextside

\end{sidebyside}

This resulted in the first two columns being equally spaced and together taking up as much
space as the third column. You can have more than 2 columns without nesting by specifying
an optional parameter to sidebyside. For example, the display below has three equally spaced
columns obtained using \begin{sidebyside}[3].

_ BirthdayBook _ BirthdayBook
known : P NAME known : P NAME
birthday : NAME - DATE | birthday : NAME +~ DATE

Don’t get carried away
with sidebyside like
this example does.

known = dom birthday known = dom birthday

7 Style Parameters

\zedindent The (horizontal) indentation for mathematical text. By default, this is the same as
\leftmargini, the indentation used for list environments.

\zedleftsep The (horizontal) space between the vertical line on the left of schemas, etc., and
the maths inside. The default is lem.

\zedtab The unit of indentation used by \t. The default is 2em.
\zedbar The length of the horizontal bar in the middle of a schema. The default is 8em.

\leftschemas A declaration which makes schema names be set flush left. Use it in the document
preamble.

\zedlinethickness The thickness of the lines that make up schema and class boxes. You can
change the thickness with a command such as \zedlinethickness=0.1pt. This may be
useful if you are creating overhead slides.
0.1pt
0.4pt (The default)

1pt

\baselinestretch The spacing for the text part of your document. It doesn’t change the spac-
ing within Z environments. It’s default valueis 1. A command such as \def\baselinestretch{2}
will make your text double spaced, but not your Z environments.

\zedbaselinestretch The spacing for the Z environment part of your document. It’s default
value is 1.

\zedsize The size of the material within the Z part of your document. It doesn’t affect the re-
mainder of your document. For example, \zedsize{\large} will give you large Z symbols
and equations but will not affect the size of the surrounding text.

\zedcornerheight The height of ‘corners’ that can be placed on the right hand side of the top
and bottom lines of schema and class boxes. The default is Oem (i.e. no corners).

8 Symbols

Multi-letter identifiers have been changed to look better than they do with vanilla TEX: instead
of speci fications, you get specifications. The letters haven’t been spread apart, and the ligature
fi has been used.

Almost all of the mathematical symbols of ITEX can be used; some have been redefined—
usually to fix the spacing so that it is suitable for Z specifications. The commands for obtaining
additional symbols are listed below. Sometimes more than one command may produce a symbol
you require. You should use the one that seems to be designed for the context you have in
mind. This is because the spacing around (and size of) symbols has been chosen for their typical
context.

Throughout the lifetime of these macros a number of alternate control sequences for any
symbol may have existed. A list of aliases has been set up so that old commands may still be used.
It is recommended however that you stick to the recommended command names for symbols as
these names may be supported by other tools. Within the table below non-recommended aliases
are surrounded by brackets, e.g., (\power).

8.1 Special Z Notation succ \succ
Numbers = # = \neq
< < << \leq \legslant
N \nat > > >=> \geq \gegslant
N; \natone (\nplus) ¥/ 4— * /[+ -
Z \integer (\num)
R \real Logic
div mod \div \mod
" i"n i\expon n - \1lnot

ﬂ:»U«.tH‘HLULU<<>

{1}

XIUUINNDC=SAMN-Y
s

\land (\wedge)
\lor (\vee)
\all (\forall)
\exi (\exists)
\exione

\nexi (\nexists)
@ \dot (\spot)
\imp (\implies)
\iff

\true

\false

\bool

\{ \cbar \}
\emptyset
\varemptyset

\mem (\in)

\nem (\nmem \notin)

\pset (\power)
\fset (\finset)
\fsetone \psetone
\uni (\union)
\int (\inter)
\psubs (\subset)
\subs (\subseteq)
\psups (\supset)
\sups (\supseteq)
\prod (\cross)

min mazr\min \max

#
U

N

\#

\duni (\dunion)
\dint (\dinter)
\upto

Relations and Functions

A p
dom
ran

RRIZEST OOV VAL

Rk
iterOR

—

\lambda \mu
\dom

\ran

\dres

\dsub (\ndres)
\rres

\rsub (\nrres)
\fovr

\cmp

\fcmp (\comp)
\limg \rimg

\id

R°{-1} R\inv
R™+ R\tcl
R™* R\rtcl
Rk R\iter k

iter \, 0 \, R
\map

— \rel

— \tfun (\fun)
— \tinj (\inj)
—» \tsur (\surj)
-+ \pfun

an \pinj

— \psur (\psurj)
- \ffun

e \finj

— \bi j
Sequences

seq \seq

seqy \seqone

() \emptyseq
() \lseq \rseq
head tail \head \tail
front last \front \last
TEV \rev

next \next

in \inseq

C \prefix
suffix \suffix
squash \squash

- \cat

~/ \dcat

5/ \demp

®/ \dovr

1 \ires

[\sres \filter
partitions \partitions
disjoint \disjoint
Schemas

A \Delta

= E \equiv \Xi
pred \pred

pre \pre

post \post

[\zproject \project
A \zand

\% \zor

9 \zcmp (\semi)
3 \zexi

v \zall

- \znot

\ \zhide (\hide)
/ \zfor

= \zimp

=4 \zeq

S>) \zovr

>> \zpipe

0 \theta

—

] \lsch \zbar \rsch

Bags

[]

bag

items
count
W
in

\1lbag \rbag
\bag
\emptybag
\items
\bagcount
\buni
\inbag

Definitions and Declarations

= \ddef

| \bbar

== \defs

= \sdef

£ \varsdef

{ » \lang \rang
Miscellaneous

[] []

())

17 17

let \zlet

where \zwhere

in \zin

() \lblot \rblot
iBump \intern Bump
INIT \Init

Exit \Exit

8.2 Other Special Notation

Temporal Logic

=

OXS)
R

Proofs

\always \uptilnow
(\henceforth)

\atnext \atlast
\eventually \previously

Theorem \TH

Proof
Lemma
od
Om

iy ™ T

\PR

\LE

\qed (\ETH) \Qed
\QED \BLACKQED
\shows (\thrm)
\vDash

\refines
\weakrefine

Object Theory

- \subclass \isa

e \weaksubclass \islikea
= \supclass

= \weaksupclass

- \hasa \instantiates
< \instancein

C LC \subtype \subtypeeq
J 3 \suptype \suptypeeq
Orders

monotonic \mono
total_order \torder
partial order \porder
Word Styles

word \word{word}

word \keyword{word}
word \boldword{word}
word \underword{word}
word \underkeyword{word}
word \underboldword{word}
‘word’ \String{word}
“word” \STRING{word}
arelb a \infix{rel} b

8.3 Special Letter Fonts

Greek

< R
@

MIT T >3 S DI A D DO
> X

(1]

SERES
J\fba
g

€ ex 9o e
D 6 R
K

\alpha

\beta

\gamma \Gamma

\delta \Delta
\epsilon \varepsilon
\zeta

\eta

\theta \vartheta \Theta
\iota

\kappa \varkappa
\lambda \Lambda

\mu

\nu

\xi \Xi

\pi \varpi \Pi

\rho \varrho

\sigma \varsigma \Sigma
\tau

\upsilon \Upsilon
\phi \varphi \Phi
\chi

\psi \Psi

\omega \Omega

Caligraphic Miscellaneous
A \mathcal{A} h \hslash
B \mathcal{B} h \hbar
C \mathcal{C} E) \backepsilon
D \mathcal{D} 0 \eth
& \mathcal{E} 3 \beth
F \mathcal{F} J \gimel
g \mathcal{G} T \daleth
H \mathcal{H} C \complement
7 \mathcal{I} T \intercal
J \mathcal{J} N \aleph
K \mathcal{K} \Y \nabla
L \mathcal{L} h \hbar
M \mathcal{M} 1 \imath
N \mathcal{N} J \jmath
@) \mathcal{0} l \ell
P \mathcal{P} (2 \wp
Q \mathcal{Q} R \Re
R \mathcal{R} R \Im
S \mathcal{S} (§) \mho
T \mathcal{T} F \digamma
U \mathcal{U}
4 \mathcal{V} 8.4 Shapes
w \mathcal{wW}
X \mathcal{X} . \Box
y \mathcal{Y} - \square
z \mathcal{Z} | \blacksquare
o \diamond
BlackBoard Bold © \Diamond
O \lozenge
A \mathbb A ¢ \blacklozenge
B \mathbb B > \vartriangleright
C \mathbb C < \vartriangleleft
D \mathbb D v \blacktriangledown
B \mathbb E > \blacktriangleright
F \mathbb F < \blacktriangleleft
G \mathbb G A \vartriangle
H \mathbb H A \blacktriangle
I \mathbb I v \triangledown
J \mathbb J A \triangle
K \mathbb K q \triangleleft
L \mathbb L > \triangleright
M \mathbb M A \bigtriangleup
N \mathbb N \VA \bigtriangledown
O \mathbb 0 & \clubsuit
P \mathbb P O \diamondsuit
Q \mathbb Q v \heartsuit
R \mathbb R P \spadesuit
S \mathbb S % \ast
T \mathbb T % \star
U \mathbb U N \maltese
\% \mathbb V * \bigstar
W \mathbb W O \bigcirc
X \mathbb X o \circ
Y \mathbb Y . \bullet
Z \mathbb 2 \centerdot

10

\cdot — \rightharpoondown
\cdots ~ \leadsto
\ldots — \longrightarrow
\vdots = \Longrightarrow
\ddots - \twoheadrightarrow
= \rightrightarrows
Circled Operations — \rightarrowtail
® \circledsS ~ \rightsquigarrow
® \circledcirc = \Rrightarrow
® \circledast > \nrightarrow
S \circleddash # \nRightarrow
® \circledR
© Qcopyright Left Right Arrows
©® fovr
© \om?nus — \leftrightarrow
g tzz;::; & \Leftrightarrow
® \odot = \rightleftharpoons
— \longleftrightarrow
Boxed operators — \Longleftrightarrow
ol \boxdot = \rightleftharpoons
2 \boxplus = \leftrightharpoons
X \boxtimes s \leftrightarrows
=! \boxminus = \rightleftarrows
s \leftrightsquigarrow
8.5 Arrow Symbols & \nLeftrightarrow
Left Arrows o \nleftrightarrow

— \leftarrow \gets Up Down Arrows
= \Leftarrow
— \hookleftarrow 1 \uparrow
. \leftharpoonup " \Uparrow
— \leftharpoondown
l \downarrow
— \longleftarrow
(3 \Downarrow
= \Longleftarrow
1 \updownarrow
“ \twoheadleftarrow
= \leftleftarrows ¢ \Updownarrow
— \leftarrowtail 1 \upuparrows
= \Lleftarrow 1 \downdownarrows
- \nleftarrow I \upharpoonright
< \nLeftarrow | \downharpoonright
1 \upharpoonleft
Right Arrows | \downharpoonleft
— \rightarrow \to Miscellaneous
= \Rightarrow
— \map /! \nearrow
— \longmapsto \ \searrow
— \hookrightarrow / \swarrow
— \rightharpoonup AN \nwarrow

11

2o P H TG0

\circlearrowright
\circlearrowleft
\Lsh

\Rsh
\looparrowleft
\looparrowright
\curvearrowleft

\curvearrowright

12

8.6 Relations

<
>
K

F R XXX F LT T T UILINUOUM v

IS S U R

R R QR

[12

- R

oA

H

[le

> <

\11

\gg
\111 \llless

\ggg \gggtr
\sqgsubset
\sgsupset
\sgsubseteq
\sgsupseteq
\owns
\vdash
\Vdash
\vDash
\dashv
\Vvdash
\models
\nvdash
\nVdash
\nvDash
\nVDash
\perp

\sim

\simeq
\egsim
\backsim
\backsimeq
\thicksim
\nsim
\approx
\napprox
\thickapprox
\approxeq
\asymp
\cong
\ncong
\doteq
\Doteq \doteqdot
\risingdotseq
\fallingdotseq
\lessdot
\gtrdot
\eqcirc
\circeq
\bumpeq
\Bumpeq
\triangleq

13

A ACKY A KR M OA T TA Y A AV VIIA AV VIAAN VAWV A IVIIA Y A AV A QY RAY LAY TA Y LRV ANV N R R |

\multimap
\propto
\varpropto
\lesssim
\gtrsim
\lessapprox
\gtrapprox
\xprec
\xsucc
\preceq
\succeq
\precsim
\succsim
\precapprox
\succapprox
\egslantless
\egslantgtr
\curlyeqgprec
\curlyeqgsucc
\preccurlyeq
\succcurlyeq
\leqq

\geqq
\legslant
\gegslant
\lessgtr
\gtrless
\lesseqgtr

\gtreqless

\lesseqqgtr

\gtreqqless

\lvertneqq
\gvertneqq
\nleq
\ngeq
\nless
\ngtr
\nprec
\nsucc
\1lneqq
\gneqq
\nlegslant
\ngeqgslant
\1lneq

M RV BA RY A NY HA LA RV RA Y RA B DA 1V

v

T A AT A IV TRLIROIU N KU RN L BRIV TN

\gneq
\npreceq
\nsucceq
\precnsim
\succnsim
\1lnsim
\gnsim
\nleqq
\ngeqq
\precneqq
\succneqq
\precnapprox
\succnapprox
\1lnapprox
\gnapprox
\Subset
\Supset
\subseteqq
\supseteqq
\nsubseteqq

\nsupseteqq
\subsetneqq

\supsetneqq
\subsetneq
\supsetneq
\nsubseteq
\nsupseteq
\trianglerighteq
\trianglelefteq
\ntrianglerighteq
\ntrianglelefteq
\ntriangleleft
\ntriangleright
\between

| \vert \mid

\| \Vert \parallel
\interleave
\shortmid
\shortparallel
\shortinterleave
\nparallel

\nmid

\nshortmid
\nshortparallel

8.7 Binary Operations

14

< < >

¥ X Y X X X H H > >l

(4B —IVIAV AN~ /7 —— 3 € C I&

)

(

X % + 2)

\curlywedge
\curlyvee
\veebar
\barwedge
\doublebarwedge
\pm

\mp

\times

\ltimes

\rtimes
\leftthreetimes
\rightthreetimes
\divideontimes
\divides

\uplus

\sqcap

\sqcup

\Cup \doublecup
\Cap \doublecap
\backslash
\setminus
\smallsetminus
\wr

\1hd

\rhd

\unlhd

\unrhd
\restriction
\amalg

\top

\bot
\smallsmile
\smallfrown
\smile

\frown
\pitchfork
\dotplus

\Join

\bowtie

8.8 Miscellaneous Symbols 8.10 Delimiters

These symbols can be made large to surround

T \dagger large formula. E.g.,
I \ddagger
§ \sectionsymbol noo
9 \P Z z
Z \angle i=1
£ \measuredangle was generated using
< \sphericalangle
! \prime \left\1lfloor...\right\rfloor
\ \backprime
Vv \surd ())
/ \smallint
b \flat M\
b \natural || \1floor \rfloor
i \sharp [] \lceil \rceil
9 \partial () \langle \rangle
;Zo anfty o0 \ulcorner \urcorner
en
. \zherefore L 4 \llcorner \lrcorner
. \because T \uparrow
v \checkmark 1 \downarrow
I \updownarrow
8.9 Variable-sized Symbols oy \Uparrow
These symbols come in two sizes which do not \Downarrow
vary with the point size of your font. The big { \Updownarrow

size can be obtained by preceding the symbol
command with the command \displaystyle. 8.11 Math Accents

> Z \sum

a \hat{a}
I1 H \product a \widehat{a}
11 H \coprod ad \widehat{aa}
aad \widehat{aaa}
f/ \integral a \tilde{a}
a \widetilde{a}
f% \oint aa \widetilde{aa}
aaa \widetilde{aaa}
N ﬂ \bigcap a \check{a}
U U \bi i} \breve{a}
tecup a \acute{a}
LJ |_| \bigsqcup a \grave{a}
V \/ \bigvee . \bar{a)
a \vec{a}
; a \dotaccent{a}
A /\ \bigwedge 'd N
©O) @ \bigodot
(%) ® \bigotimes 8.12 Size Commands
@69 \bigoplus popp \mu \zsmall\mu \zSmall\mu
E—JH-J \biguplus [b (b \zbig\mu \zBig\mu \zBIG\mu

15

