The tensor * package for ETEX2e

Philip G. Ratcliffe T
Dipartimento di Scienza e Alta Tecnologia
Universita degli Studi dell’Insubria—Como

(v2.2, last revision 2023/07/18)

Abstract

This is a complete revision and extension of Mike Piff’s original tensor
package; it defines two commands for typesetting tensors with mixed upper
and lower indices in which the correct horizontal spacing must be observed.
Various forms of alignment are available and spaces may be replaced by
dots or other symbols. Consistent preposing of indices is now made possible
while backwards compatibility is maintained. A special-purpose command
to typeset nuclides is also defined.

1 Introduction

It is common in both physics and mathematics to use tensors with mixed upper and
lower indices in which the relative horizontal positions and spacing are significant,
for example

T RH P

Vo S oor €.
The macros defined in this package automatically maintain consistent horizontal
positioning. Another common need addressed is the preposing of upper and lower
indices, as in

g VUt t)|gt)y or '§C.

Note the correct spacing of the pre-index H in the above example. It should also
be noted that constant vertical positioning is maintained for lone indices; consider
the following (examine carefully the last lower index o on the right):

MYIM of MM,

where the former group was typeset using \indices, the latter using ‘_’ and ‘~’.

2 Usage

Two robust math-mode commands, \tensor and \indices, are defined (the first
of which remains backwards compatible with Mike Piff’s original definition). A
new, robust text- and math-mode command, \nuclide, is also defined specifically
for typesetting nuclides, as in the above example.

*Based on and extending the original package of the same name by Mike Piff (1996/06/03).
TE-mail: philip.ratcliffe@uninsubria.it

\indices

\tensor

\indices*
\tensor*

\indexmarker

2.1 User commands

To produce a mathematical expression (typically a tensor) with mixed upper
and lower indices, simply enter (object)\indices{ ~(sup1)_(sub1) ~(sups)_{subs)
... }. Thus, in math mode it is sufficient to type e.g.

M\indices{"a_b"{cd}_e} to obtain M%° .

This variant has been retained in a completely backwards compatible form
while also being considerably extended; the syntax for the previous expression
is \tensor{M}{"a_b~{cd}_e}, for which the resulting output is identical. The
extended form of \tensor defined here has an optional argument for indices to be
placed before the tensor, thus:

\tensor[~a_b~c_d]{M}{"e_f"g_h} produces M7, .

A fairly robust (if somewhat crude) attempt is made to ensure the correct spacing
and skew of the preposed indices with respect to the tensor object itself.

Note that also \sb and \sp may be used in place of ‘_” and ‘~’ respectively for
both the above macros.

These two macros have starred forms, which collapse the spacing (i.e. return to
standard form). While \indices* is clearly redundant (and is included merely for
symmetry), \tensor* also right justifies the pre-index strings, so that e.g. nuclides
may be typeset as follows (though see below for a purpose-built command):

\tensor*[~{14}_6]{\mathrm{C}}{} produces '4C.

For those familiar with the amsmath package, this is more-or-less a generalisation
of (though not intended as a substitute for) the \sideset command (which itself
is only wvalid for objects defined with \mathop). Note that to use \tensor* as a
substitute for \sideset, it is necessary to insert a \nolimits command, thus:

\tensor*["*_*]{\prod\nolimits}{"*_*} produces *H*

The output appears identical to that of \sideset{_*"*}{_x"x}{\prod}.

The \indices* and \tensor* forms alone, allow a * to also be placed as the
first entry in either index-list argument, causing alignment (left justification) of
the successive pairs of upper and lower indices. A warning is issued if a * appears
in an argument string of either non-starred commands. Thus,

\tensor*{MM*"{i_1}_{m_1}"{i_2}_ {m_2}"{i_3}_{m_3}"{i_4} _{m_4}}

. i1 i 93 T4 11421374
produces Mm17n2'm3m4 (Cf Mm1m27rzgm4)'

Note that no warning is issued for improper pairing of successive indices.

In analogy with the tensind package, the command \indexmarker (by default
empty) may redefined (using \renewcommand) to introduce a visible place marker
for the index spaces (though not all tensind functionality is reproduced here); a
simple possibility is

\renewcommand\indexmarker{\cdot},
after which,
\tensor{M}{"a_b~c_d}

produces
M%< instead of M%C, .

\nuclide

\nuclideFont
\massnumFont

align
text
nosmash
nostrut

\tensorSmash
\tensorStrut

This command, available in both math and text modes, is defined with the
same purpose and result as the \isotope command (from the package of the
same name). The syntax is

\nuclide [{mass no.)] [{atomic no.)]{{symbol)}.

Thus, the earlier example of '§C is obtained with \nuclide[14] [6]1{C} while
\nuclide[4] [2]1{\alpha} gives 3a. As indicated by the square brackets, the
(mass no.) and (atomic no.) arguments are optional. Note that there is a little
more space (1mu) between the numbers and the chemical symbol than appears in
the example constructed manually with \tensorx*.

All the above-defined commands may be used recursively, i.e. a \tensor may
occur as an index to another \tensor and should behave according to the current
superscript—subscript level. The user commands are defined here as ‘robust’; they
may thus appear as so-called moving arguments, i.e. to \caption, \section etc.

By default, the fonts used in \nuclide for the chemical symbol, mass and
atomic numbers are \mathrm; i.e., \nuclideFont (for the chemical symbol) is
initially defined as \mathrm and \massnumFont (for the mass/atomic numbers)
as \nuclideFont (for backwards compatibility). This then now allows for inde-
pendent font variation of the chemical symbol and mass/atomic numbers. Both
macros may be reset with \renewcommand to \mathsf, \mathbf, \mathtt etc.,
or simply \relax (this last for \nuclideFont has the chemical symbol font de-
fault to \mathit for correct spacing, while for \massnumFont the mass and atomic
numbers revert to standard math font).

2.2 Package options

As of v2.2, the package includes four options relating to the vertical alignment of
indices. TEX’s behaviour in this regard is not always optimal or what the user
may desire. Consider the following output (constructed using ‘_” and ‘~’.):
ST

While the indices within each single mathematical object are mutually vertically
aligned correctly, between separate objects they may not be. This is because
IXTEX sets the baseline according to the height and depth of the given indices on a
per-object basis. To obviate such behaviour, this package takes the simplest route
of using \smash to hide the height and depth of each superscript and subscript
string so that they are always set with the same baselines. This naturally leads to a
somewhat cramped form (superscripts are set a little too low and subscripts high)
and so a specially defined \strut is included, which slightly raises superscripts
and lowers subscripts; by default, this is only implemented in displayed math, as
the impact on inline text may be too disruptive.

The options thus introduced are align, text, nosmash and nostrut. The first
implements both \smash and a \strut as outlined above, with text extending the
implementation of the \strut to inline text, while nosmash and nostrut cancel
the single effects (using both entirely negates align). Option ordering is irrelevant
and the last three are inoperative without the first.

The desired effects are implemented via two internal commands, which may
also be redefined by the user. The first, \tensorSmash, is set equal to \smash,
which then takes each index string as an argument. The second, \tensorStrut, is

set equal to the height of ‘1’ and depth of ‘j’ in the relevant font, (by default though
only inside displayed math environments) and is appended to each \smash’ed index
string.

2.3 Caveats

Grouping of multi-token indices should be performed as normal (i.e. via enclosure
within a brace pair { }). Moreover, owing to the method by which index strings are
parsed, any index constructs such as \mathrm{H} must also be entirely enclosed
in braces, thus: \indices{_{\mathrm{H}} "x}.

Spacing is not guaranteed to always appear optimal, especially when between
pre-pended indices and the tensor object itself. Recall too that screen viewing
often distorts small spaces owing to resolution effects.

2.4 External package requirements

No external packages are required or called.

2.5 Package conflicts

There are few conflicts with standard I4TEX2e packages; a problem with the color
package in the first version has now been corrected, as too a recently flagged
problem with the underscore package.

However, the macros defined here fail as arguments of \bm from the bm package
(due to parsing conflicts) or, consequently, of macros defined by the \maybebm
package. A work around for, say, a chapter or section header is

{\let\nuclideFont\maybebm \nuclide[4] [2]{\textup{He}}},

which should render 3He in the header, but 3He in the contents listing.

3 Implementation

3.1 User options

First, the package options with their related \if... conditionals are defined and
processed.

1 \newif\iftnsr@Aln

2 \DeclareOption{align}{\tnsr@Alntrue}

3 \newif\iftnsr@Txt

4 \DeclareOption{text}{\tnsr@Txttrue}

5 \newif\iftnsr@Sma \tnsr@Smatrue

6 \DeclareOption{nosmash}{\tnsr@Smafalse}
7 \newif\iftnsr@Str \tnsr@Strtrue

8 \DeclareOption{nostrut}{\tnsr@Strfalse}
9 \ProcessOptions

3.2 User commands

The tensor package defines three basic user commands:

\tensor

\indices

\nuclide

\nuclideFont
\massnumFont

\tnsr@Sps
\tnsr@Sbs
\tnsr@Spe
\tnsr@Sbe

\ncld@Mno

\iftnsr@Spc

The first takes three possible arguments (an optional index string to be preposed,
the tensor object, the index string) and also has a starred form, which suppresses
spacing (it is backwards compatible with Mike Piff’s original version).

10 \DeclareRobustCommand\tensor{’

11 \tnsr@Prp

12 \@ifstar{\tnsr@Spcfalse\tnsr@Aux}{\tnsr@Spctrue\tnsr@Auxl}/,

13 }

The second is a ‘lightweight’ form, which is placed immediately following the
tensor object, takes just one argument (the index string) and also has a starred
form (this form was not however present in the original package).

14 \DeclareRobustCommand\indices{%

15 \tnsr@Prp

16 \@ifstar{\tnsr@Spcfalse\ndcs@Aux}{\tnsr@Spctrue\ndcs@Auxl}/,

17 }

This additional new command takes one direct argument (an optional mass
number) and two indirect arguments (an optional atomic number, the chemi-
cal symbol—these last two are handled by an auxiliary macro). Since usage is
common in text, math mode is ensured.

18 \DeclareRobustCommand\nuclide [1] []1{%

19 \ncld@Mno{#1}%

20 \ncld@Aux

21 }

These set the fonts for \nuclide; the defaults are \mathrm for both \nuclideFont
and \massnumFont. They may be redefined as e.g. \mathsf, \mathbf, \mathtt,
\mathit etc., or even simply \relax or \renewcommand\nuclideFont{}.

22 \newcommand\nuclideFont{\mathrm}
23 \newcommand\massnumFont{\nuclideFont}

3.3 Internal token registers

The token registers that hold the upper and lower index strings, and the most
recent upper and lower index elements respectively:

24 \newtoks\tnsr@Sps
25 \newtoks\tnsr@Sbs
26 \newtoks\tnsr@Spe
27 \newtoks\tnsr@Sbe

This token register temporarily holds the mass number for \nuclide.

28 \newtoks\ncld@Mno

3.4 Internal switches

The switch to select or suppress index element spacing.
29 \newif\iftnsr@Spc

3.5 Internal macros

\tnsr@Prp Here we simply reset token registers and the warning macro before commencing.
\tnsr@Wrn 30 \newcommand\tnsr@Wrn{}

31 \newcommand\tnsr@Prp{/,

32 \tnsr@Sps{}V

33 \tnsr@Sbs{}/

34 \def\tnsr@Wrn{}

35 }

\ndcs@Aux This (lightweight) auxiliary macro for \indices takes one argument (an index
string); it calls \tnsr@Set, prints the indices and then issues any warnings.
36 \newcommand\ndcs@Aux [1]{%
37 \tnsr@Erx
38 \def\tnsr@0bj{}%
39 \tnsr@Set{#1}%
40 \tnsr@Fin
41 \tnsr@Wrn
42 }

\tnsr@Aux This auxiliary macro for \tensor takes three possible arguments (an optional pre-
index string, the tensor object, the post-index string) and passes everything via
\mathpalette to \tnsr@Plt.

43 \newcommand\tnsr@Aux [3] []1{%

44 \tnsr@Erx

45 \mathpalette{\tnsr@Plt{#1}{#3}}{#2}/
46 \tnsr@Wrn

47}

\tnsr@Plt This takes four arguments (the pre-index string—may be empty, the post-index,
the current math style, the tensor object) and calls \tnsr@Set separately for both
pre- and post-index strings.

48 \newcommand\tnsr@P1lt [4]{}
49 \def\tnsr@Obj{#3#4}%

50 \def\tnsr@Tmp{#1}/

51 \ifx\tnsr@Tmp\Q@empty\else

52 \tnsr@Set{#1}%

53 \hphantom{{}\tnsr@Fin}j,

54 \tnsr@Sps\expandafter{’

55 \expandafter\tnsr@Krn\expandafter{\the\tnsr@Spsl}y
56 Yh

57 \tnsr@Sbs\expandafter{

58 \expandafter\tnsr@Krn\expandafter{\the\tnsro@sbsl}y,
59 %

60 \fi

61 \tnsr@Set{#21}V,
62 #4\tnsr@Fin
63 }

\tnsr@Set This takes one argument (a pre- or post-index string) and starts processing.

64 \newcommand\tnsr@Set [1]{/
65 \let\tnsr@Swx\relax

66 \tnsr@Pro#1\tnsr@Err
67

\tnsr@rn This has one argument (a processed index string) and inserts the necessary offsets.

68 \newcommand\tnsr@rn[1]{%

69 \settowidth\@tempdima{$\m@th\tnsr@Obj {#1}\mkern-1imu$l}}
70 \kern-\@tempdima

71 #1

72 \settowidth\@tempdima{$\m@th\tnsre0bj$}%

73 \kern\@tempdima

74 }

\tnsr@Pro This is the index-string processing macro, it takes one argument (an index string):

75 \newcommand\tnsr@Pro [1]{%
76 \ifx#1\tnsr@Err

77 \let\tnsr@Nxt\relax

78 \else

79 \if#1%

80 \iftnsr@Spc

81 \gdef\tnsr@Wrn{%

82 \PackageWarning{tensor}{%

83 >+’ not allowed in argument here; I shall ignore it.}
84 \MessageBreak Either remove it or use ’\string\tensorx’}
85 Yh

86 Y

87 \else

88 \let\tnsr@Swx\tnsr@Swa

89 \fi

90 \let\tnsr@Nxt\tnsr@Pro

91 \else

92 \if#1°"

93 \def\tnsr@Nxt{\tnsr@Add{\tnsr@Sps}{\tnsr@Sbs}{\tnsr@Spel}}%
94 \else

95 \if#1_

96 \def\tnsr@Nxt{\tnsr@Add{\tnsr@Sbs}{\tnsr@Sps}{\tnsr@Sbel}}/
97 \else

98 \tnsr@Err

99 \let\tnsr@Nxt\tnsr@Pro

100 \fi

101 \fi

102 \fi

103 \fi

104 \tnsr@Nxt

105 }

\tnsr@Swa Here we flip the state of \tnsr@Swx to \tnsr@Swb.
106 \newcommand\tnsr@Swa{\let\tnsr@Swx\tnsr@Swb}

\tnsr@Swb Here we flip the state of \tnsr@Swx to \tnsr@Swa then calculate and insert the
necessary padding for horizontal index alignment.

107 \newcommand\tnsr@Swb{%

108 \let\tnsr@Swx\tnsr@Swa

109 \settowidth\@tempdima{$\m@th\tnsr@Obj{} {\the\tnsr@Spe}$1}/
110 \settowidth\@tempdimb{$\m@th\tnsr@0Obj{}_{\the\tnsr@Sbel}$}’

111 \addtolength\@tempdima{-\@tempdimb}
112 \ifdim\@tempdima=\z@\else

113 \ifdim\@tempdima>\z@

114 \tnsr@Sbs\expandafter\expandafter\expandafter{y,
115 \expandafter\the\expandafter\tnsr@Sbs

116 \expandafter\kern\the\@tempdima

117 Yh

118 \else

119 \@tempdima=-\@tempdima

120 \tnsr@Sps\expandafter\expandafter\expandafter{y,
121 \expandafter\the\expandafter\tnsr@Sps

122 \expandafter\kern\the\@tempdima

123 Yh

124 \fi

125 \fi

126 }

\tnsr@Add This macro takes four arguments (the token-register target for the next index
token, the token-register target for the phantom element, the token-register target
for the most-recent element, the next index token). It adds the next index token
to the upper or lower string and (if spacing is on) a place-holder (\tnsr@Hph) of
the same size to the lower or upper string, respectively. It also calls \tnsr@Swx to
flip state (if activated). The use of \leavevmode avoids conflict with the color
package.

127 \newcommand\tnsr@Add [4]1{%

128 #1\expandafter{\the#1\leavevmode{#41}}%
129 \iftnsr@Spc

130 #2\expandafter{\the#2\tnsr@Hph{#4}1}
131 \fi

132 #3{\leavevmode{#4}}/,

133 \tnsr@Swx

134 \tnsr@Pro

135 }

\tnsr@Hph The place-holder macro, uses \mathpalette to call the contents \tnsr@Mph:
136 \newcommand\tnsr@Hph{\expandafter\mathpalette\expandafter\tnsr@Mph}

\tnsr@Mph The place-holder macro contents:

137 \newcommand\tnsr@Mph [2] {/,

138 \settowidth\@tempdima{$\m@th#1{#2}$}Y

139 \makebox [\@tempdima] [c]{$\m@th#1\indexmarker$}/
140 }

\indexmarker The default (blank) placeholder for index spacing:

141 \newcommand\indexmarker{}

\tnsr@Fin Finally, we put the index strings into place:

142 \newcommand\tnsr@Fin{Y

143 “{\tensorSmash{\the\tnsr@Sps}\tnsr@Strl}y,
144 _{\tensorSmash{\the\tnsr@Sbs}\tnsr@Strl}
145 }

\tensorSmash Initialise \tensorSmash as \relax and then conditionally set it equal to \smash
(it is user redefinable).
146 \let\tensorSmash\relax
147 \iftnsr@Aln
148 \iftnsr@Sma

149 \let\tensorSmash\smash
150 \fi
151 \fi

\tensorStrut Initialise \tensorStrut as \relax and then conditionally set it to the height and
\tnsrestr depth of ‘j1’. By default, it is only applied to displayed math environments (passed

on via \tnsr@Str, which is \def’ed as \tensorStrut to be user redefinable), but
always (i.e. extended to inline text) if the package option text is present.
152 \newcommand\tensorStrut{}
153 \let\tnsr@Str\relax
154 \iftnsr@Aln
155 \iftnsr@Str

156 \renewcommand\tensorStrut{\vphantom{j1}}

157 \iftnsr@Txt

158 \def\tnsr@Str{\tensorStrut}

159 \else

160 \everydisplay\expandafter{\the\everydisplay\let\tnsr@Str\tensorStrut}
161 \fi

162 \fi

163 \fi

\ncldeAux This auxiliary macro takes two arguments (an optional atomic number and the
chemical symbol). The mass number is passed on via \ncld@Mno. Math mode is
ensured since usage is common in text. The spacing is increased by 1mu for better
appearance.

164 \newcommand\nc1d@Aux [2] [1{%
165 \ensuremath{’

166 \tensor*[~{\massnumFont{\the\ncld@Mno}}_{\massnumFont{#1}}1%
167 {\mkernimu{\mathit{\nuclideFont{#2}}{}}}{}%

168 }%

169 }

\tnsr@Err This is invoked in the only error situations considered.

170 \newcommand\tnsr@Err{}
171 \newcommand\tnsr@Erx{Y
172 \def\tnsr@Err{%

173 \globalllet\tnsr@Err\relax

174 \PackageError{tensor}{/,

175 Misordered sub/superscript items\on@line;

176 \MessageBreak index tokens may have been lost.

177 \MessageBreak Press <return> and I shall try to continue
178 }Index string probably has extra/missing "’ or ’_’.}}

179 Y%

180

Change History

v1.0 \tnsr@Add: added \leavevmode, to
General: original version 1 avoid color package conflict ... 8
v2.0 \tnsr@Krn: slightly altered spacing 7
General: extended \tensor, added \tnsr@Mph: substituted \hbox with
\indices and \nuclide, \makebox 8
substituted \newcommand with
\DeclareRobustCommand in v2.2
user commands, documented \massnumFont: added independent
and packaged 1 mass/atomic-no. font control .. 5
v2.1 \tnsr@Fin: added vertical
\indexmarker: added capability to alignment capability 8
insert place holders 8 \tnsr@Pro: substituted \ifx with
\indices: added starred form, for \if to avoid underscore
symmetry with \tensorx 5 package conflict 7

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Symbols
* (argument) 2
\@ifstar 12, 16
\@tempdima .. 69, 70,
72, 73, 109, 111,
112, 113, 116,
119, 122, 138, 139
\@tempdimb 110, 111
A
\addtolength 111
align (option) 3
arguments:
oL 2
D
\DeclareOption 2,4, 6,8
\DeclareRobustCommand
...... 10, 14, 18
E
\ensuremath 165
\everydisplay 160
G
\global 173
H
\hphantom 53

1
\ifdim 112, 113
\iftnsr@Aln . 1, 147, 154
\iftnsr@Sma 5, 148

\iftnsr@Spc . 29, 80, 129

\iftnsr@Str 7, 155
\iftnsr@Txt 3, 157
\indexmarker 2, 139, 141
\indices 2,14
\indices* 2
K
\kern ... 70, 73, 116, 122
L
\leavevmode ... 128, 132
M
\m@th 69, 72,
109, 110, 138, 139
\massnumFont . 3, 22, 166
\mathit 167
\mathpalette ... 45, 136
\mathrm 22
\mkern 69, 167
N
\ncld@Aux 20, 164

\ncld@Mno 19, 28, 166
\ndcs@Aux 16, 36
\newif 1,3,5,7,29
\newtoks 24, 25, 26, 27, 28
nosmash (option) 3
nostrut (option) 3
\nuclide 3,18
\nuclideFont . 3, 22, 167
(@)
options:
align 3
nosmash 3
nostrut 3
text 3
P
\PackageError 174
\PackageWarning ... 82
\ProcessOptions 9
S
\settowidth

69, 72, 109, 110, 138
\smash 149
T
\tensor 2, 10, 84, 166

\tensor* 2
\tensorSmash

3, 143, 144, 146
\tensorStrut 3 152
text (option) 3
\tnsr@Add 93, 96, 127
\tnsr@Alntrue 2
\tnsr@Aux 12, 43
\tnsr@Err 66, 76, 98, 170
\tnsr@Erx 37,44, 171
\tnsr@Fin 40, 53, 62, 142
\tnsr@Hph 130, 136
\tnsr@rn 55, 58, 68
\tnsr@Mph 136, 137
\tnsr@Nxt 77,

90, 93, 96, 99, 104

\tnsr@bj 38,

49, 69, 72, 109, 110
\tnsr@Plt 45, 48
\tnsr@Pro 66, 75, 134
\tnsr@Prp 11, 15, 30
\tnsr@Sbe 24, 96, 110
\tnsr@Sbs

. 24,33, 57, 58
93, 96, 114, 115, 144

\tnsr@Set 39, 52, 61, 64
\tnsr@Smafalse 6
\tnsr@Smatrue 5
\tnsr@Spcfalse 12, 16
\tnsr@Spctrue ... 12,16
\tnsr@Spe 24, 93, 109

11

\tnsr@Sps
. 24, 32,54, 55
93, 96, 120, 121, 143

\tnsr@Str . 143, 144, 152
\tnsr@Strfalse 8
\tnsr@Strtrue 7
\tnsr@Swa 88, 106, 108
\tnsr@Swb 106, 107
\tnsr@Swx

65, 88, 106, 108, 133
\tnsr@Tmp 50, 51
\tnsr@Txttrue 4
\tnsr@Wrn 30, 41, 46, 81

A%
\vphantom 156

	1 Introduction
	2 Usage
	2.1 User commands
	2.2 Package options
	2.3 Caveats
	2.4 External package requirements
	2.5 Package conflicts

	3 Implementation
	3.1 User options
	3.2 User commands
	3.3 Internal token registers
	3.4 Internal switches
	3.5 Internal macros

	Change History
	Index
	Symbols
	A
	D
	E
	G
	H
	I
	K
	L
	M
	N
	O
	P
	S
	T
	V

