The ITEX wargame package

A tutorial

Christian Holm Christensen

November 19, 2024

1 Introduction

This is a short tutorial on how to use the N TEX wargame
package. We will walk through the definition materials
for a game. We will not give actual rules for the game.
That is a whole different topic and I refer you to the
literature, for example

Simulating war by P.Sabin

The Complete Wargames Handbook by J.F.Dunnigan
Designing Wargames: Introduction by G.Phillies (and

associated Youtube lecture series)

2 The game

The game we will create is a small game with two fac-
tions (sides, or players). The game is not supposed to
be play-able, and we’ll leave out a lot of details which
we would need in a full game.

3 The game package

To make our game components re-usable (in particu-
lar when we want to make a VASSAL module), we will
put our definitions of counters, board, and charts into a
package file called game.sty'

Code shown below is in the package.

The first thing we do in the package is to identify the
package and load the wargame package.

\ProvidesPackage{game}
\RequirePackage{wargame}
\RequirePackage{colortbl}

4 The units

We will set-up our units for the game. As noted above,
we will make two factions which we will call A and B.

In fact, most of this document is in that file, because it allows
us to document the code using KTEX’s 1txdoc class.

Figure 1: Faction colours

The NATO App6(d)? symbology defines that
friendly and hostile units should have differ-
ent symbol frames, but as we will make a
game for two players, and it seems unfair to
label one as hostile and the other friendly,
we will stick with the friendly base frames.

Of course, if we were to make a solitaire or
cooperative game, we might want to use the
hostile base frame for the opponent units.

4.1 Faction styles

We will start by defining two TikZ/PGF? styles for our
two factions. We will call these a and b (obviously).
These will define the colours of all counters of those
sides.

\colorlet{a-bg}{hostile}

\colorlet{b-bg}{friendly}

\tikzset{%
a/.style={fill=a-bg,draw=black},
b/ .style={fill=b-bg,draw=black}}

Note that we made the colours a-bg and b-bg. Since
we will use these colours a few times, it makes sense to
make a single definition which we can then freely change
at any point and then automatically have that change
propagate everywhere.

These styles are shown in Figure 1.

Here we have used the colours friendly and hostile
defined by the wargame package, even though we said we
would not use the corresponding hostile base frame.

Zhttps://nso.nato.int/nso/nsdd/main/standards/
ap-details/1912/EN

3The wargame package relies heavily on TikZ/PGF. It is highly
recommended that you acquaint yourself with TikZ/PGF. The
manual, including tutorials, is available from https://ctan.org/

pkg/pgf.


https://www.bloomsbury.com/uk/simulating-war-9781472533913/
https://www.professionalwargaming.co.uk/Complete-Wargames-Handbook-Dunnigan.pdf
https://www.scribd.com/book/220336866/Designing-Wargames-Introduction
https://www.youtube.com/playlist?list=PLjnA1DE9KX645eBC2gDWHkSlCPvpb4JAQ
https://nso.nato.int/nso/nsdd/main/standards/ap-details/1912/EN
https://nso.nato.int/nso/nsdd/main/standards/ap-details/1912/EN
https://ctan.org/pkg/pgf
https://ctan.org/pkg/pgf

a flippped b flipped

Figure 2: Faction flipped colours

However, we can use any colours we can define in I TEX
with the xcolor® package, for example,

\definecolor{a-bg}{HTML}{3333ff}

which will make a light blue colour.

Since we intent to make double-sided counters, so that
units will have two steps (front and back), we also de-
fine styles for the back side. These will have lighter
backgrounds than the front side.

\tikzset{%
a flipped/.style={a,fill=pgffillcolor!50!white},
b flipped/.style={b,fill=pgffillcolor!50!white}}

Note that we use the styles a and b as bases for these
styles. Thus, if we make changes to the base styles, they
automatically propagate to our flipped styles.

By convention, it is best to name your back-
sides of counters and so on the same as the
front side, but with * flipped’ appended.
It is therefore also a good idea to use that
convention for styles and such.

The colour pgffillcolor is what ever the current fill
colour is (i.e., set by the a and b styles).

These styles are shown in Figure 2.

4.2 Unit templates

In our game we will have two kinds of units: land, and
air.

Land units represent ground types of different kinds (in-
fantry, armoured, etc.) and have two factors: A combat
factor (CF) and a movement factor (MF). In addition,
for artillery units, we will also specify a range. Each
unit will also have a unique identifier, and possibly par-
ent organisational identifier, starting hex, and turn of
appearance.

Air units provide different kinds of support for the
ground units. Since we will make a game on an op-
erational level (armies, divisions, brigades), we will give
air units a single factor — the odds column shift (see
the combat resolution table later on).

‘https://ctan.org/pkg/xcolor

4. The units

Let us first define a template for the ground units. We
will call this gu (for ground unit), and it will take 8°
arguments:

The unit type

The lower unit type (e.g., airborne)
The unit size (echelon)

The unit identifier

The parent unit identifier

The factors (more on this later)

The starting hex

0 NS oA W

The turn of appearance

\tikzset{
gu/.style args={#1,#2,#3,#4,#5,#6,#7 ,#8}{/,
chit={},

symbol={Y, Defines the NATO symbol
faction=friendly, % See note
command=land, % Ground units
main={#13},% Unit type(s) (e.g., infantry)
lower=#2,% Lower type
echelon=#3,% Size (e.g., division)
scale line widths,
line width=1pt,

1},

unique={chit/small identifier=#4}, J Unit ID

parent={chit/small identifier=#5}, J, Parent ID

factors={#6}, % The unit factors

upper left={chit/small identifier=#7}, % Hex

upper right={gu turn=#8} ’, Turn

} % end of chit
} % end of gu
}

Note the unique, parent, and upper left keys of chit
are set to contain a chit/identifier (or chit/small
identifier) picture. In general, all the keys of a chit
and (and natoappéc) TikZ/PGF node need to be pic®
objects. The chit/identifier picture outputs the text
(the argument after the =).

Note that for upper left, we used the pic gu turn,
which we have not defined yet. Let us define that now.
This will be a picture that puts in the turn number when
a unit appears. Turn number “0” is the “At-start” turn,
and so we will deal with that specifically. Other turns
should just be done normally — that is, we use another
chit/small identifier picture

\tikzset{
gu turn/.pic={%
\ifx#1\empty\else
\ifnumO=#1\else
\pic{chit/small identifier={#1}};\fi\fi},
pics/gu turn/.default=0
}

5Yes, that’s a lot, but we may leave some of them blank. Don’t
worry, we’ll make more short-hands.

SA small re-usable picture. See the TikZ/PGF manual, Chap-
ter 18.

© 2022, Christian Holm Christensen, licensed under the CC-BY-SA 4.0


https://ctan.org/pkg/xcolor

The wargame tutorial

Figure 3: Ground unit template

Note that we set the default value in case we get no turn
number.

3
E2 E2
6—4 143

Figure 4: Combat and field artillery templates

}
}

}
We have put the keys scale line widths and line width=1pt

into the symbol (the NATO symbol) part. The latter
sets the line width to be a little thicker than usual. This
is to make the counters more easily read. The former
ensures that if we scale our counters up or done, then
the line width will likewise scale’.

For the factors, we will use two different pic: chit/2
factors for regular ground units, and chit/2 factors
artillery for artillery units.

The template is shown in Figure 3.

The image above was made with

\begin{tikzpicture}
\chit [gu={infantry, ,division,23,2,
{chit/2 factors={2,4}},D3,2}];
\end{tikzpicture}

As said above, we will have artillery ground units and
other kinds of ground units. Let us make two templates
— one for field-artillery ground units (fu), which has a
range, and regular combat units (cu).

First the artillery unit type: fu. This takes 8 arguments

The echelon

The identifier

The parent identifier

The combat factor (CF)
The movement factor (MF)
The range

The starting hex

® N oot W

The turn of appearance

\tikzsetq{
fu/.style args={#1,#2,#3,#4,#5,#6,#7,#8}{
gu={%
{{[fill=pgfstrokecolor]artillery}}, % Type
, hlower
#1, % echelon
#2, % ID
#3, % Parent ID
{chit/2 factors artillery={#4,#5,#6}},
#7, % Hex
#8 Y Turn

"Other elements scale automatically because of TikZ/PGF’s
transform shape key

Note that we pass the options [fill=pgfstrokecolor]
to the pic artillery® to fill in the artillery symbol.
Note that we need to protect this by putting in curly
brackets (2 in this case). Similarly, we protect the
chit/2 factors artillery call.

In general, we may pass options (or keys) to
a pic by preceeding its name with [(keys)].
However, we then must protect the it as in
{[{keys)](pic)}. Further, if [{keys)] con-
tains a list of keys, separated by commas,
then we need to protect (keys) too, as in
{[{[(keys)1}1(pic)}. A little clunky, but
that’s how TEX works sometimes.

And now the combat unit template: cu. This takes 9
arguments.

The type

The lower type

The echelon

The identifier

The parent identifier

The combat factor (CF)
The movement factor (MF)
The starting hex

© 0N o WD

The turn of appearance

\tikzset{
cu/.style

gu={%
{#1},

args={#1,#2,#3,#4,#5 ,#6,#7 ,#8,#9}{

% Type
#2, % lower
#3, % echelon
#4, % ID
#5, Y Parent
{chit/2 factors={#6,#7}},
#8, % Hex
#9 % Turn

}
}
}

Again, let us see what that looks like (Figure 4).

8To be explicit natoappbc/s/artillery.

(© 2022, Christian Holm Christensen, licensed under the CC-BY-SA 4.0



3

<E!!|~
+2

Figure 5: Air unit template

The above was made with

\begin{tikzpicture}
\chit[fu={battalion,23,21,1,3,4,E2,}]1(0,0);
\chit [cu={infantry,airborne,regiment,21,2,6,4,E2,}]
(2,0);

\end{tikzpicture}

Finally, we make a template for air units. We will
have Close-combat Air Support (CAS cas) and strate-
gic bombers (sb). To make things a little easier for us,
we first define a template for all air units. This takes 7
arguments:

The unit type (e.g., fixed wing, rotary wing).
The upper modifier (e.g., F for fighter)

The lower modifier (e.g., H for ‘heavy’)

The unit identifier

The parent unit identifier

The factor (column shift)

7. The turn of appearance

A T o

\tikzset{
au/.style args={#1,#2,#3,#4,#5,#6,#7}1{),
chit={%
symbol={} Defines the NATO symbol
faction=friendly, % See note
command=air, % Air units
main=#1,% Unit type
upper={text=#2},
lower={text=#3},
scale line widths,
line width=1pt,
},
unique={chit/identifier=#4}, % Unit ID
parent={chit/identifier=#5}, % Parent ID
factors={#6}, % The unit factors
upper right={gu turn=#7} % Turn
} % end of chit
} % end of gu
}

Here, text” for lower and upper is a picture that puts
the text given as the argument after the =. The template
is shown in Figure 5.

The above was made with

\begin{tikzpicture}
\chit [au={fixed wing,B,,A,1,
{chit/1 factor=+2},3}]1(0,0);
\end{tikzpicture}

9really /natoapp6c/s/text.

4. The units

HQN Mﬂ‘

+1

Figure 6: CAS and SB templates

As we said, we will have CAS and strategic bomber
wings in this game, so we make templates for these.
Our CAS will be helicopters (rotery wing) while the
strategic bombers are planes. CAS gives a 1 CF, while
strategic bombers gives 1 column shift. Arguments are

1. The identifier
2. The parent identifier

3. The turn of appearance

\tikzset{
cas/.style args={#1,#2,#3}{ . Close air support
au={J, Air unit
rotary wing, % Helicopter
,» /% No lower, upper
#1, % ID
#2, % Parent ID
{chit/2 factors={1,0}},
#3 %Turn
}
},
sb/.style args={#1,#2,#3}{), strategic bomber
au={% Air unit
fixed wing, ’%Planes
B, % Bomber
M, % Medium
#1, % ID
#2, % Parent
{chit/1 factor={+1}},
#3 % Turn
}
}
}

The templates are shown in Figure 6.

The above was made with

\begin{tikzpicture}
\chit [cas={1,2,10}(0,0);
\chit [sb={3,4,}(2,0);
\end{tikzpicture}

4.3 Specialisations

We will now make some specialisations of the gu style.
These represent headquarters hg, mechanised infantry
mi, infantry in, and so on. We do this because we want
units of the same kind to have similar factors and so on.
Since almost all of our units are battalions, we also code
that in.

All of these, except ff for field artillery units, take 4
arguments

(© 2022, Christian Holm Christensen, licensed under the CC-BY-SA 4.0



The wargame tutorial

The identifier
The parent identifier

1.
2.
3. The starting hex

4. The turn of appearance

The style £f precedes these arguments with a single ar-
gument for the unit size (echelon).

\tikzsetq{
in/.style args={#1,#2,#3,#4}{%
cu={infantry, ,battalion,#1,#2,2,3,#3,#4}},
mi/.style args={#1,#2,#3,#4}{J,
cu={{armoured,infantry}, ,battalion,#1,#2,4,4,#3,#4}},
ab/.style args={#1,#2,#3,#4}{/
cu={infantry,airborne,battalion,#1,#2,1,3,#3,#4}},
ca/.style args={#1,#2,#3,#4}{%
cu={combined arms, ,battalion,#1,#2,3,3,#3,#4}},
ar/.style args={#1,#2,#3,#4}{}
cu={armoured, ,battalion,#1,#2,6,4,#3,#4}},
re/.style args={#1,#2,#3,#4}{/
cu={reconnaissance, ,battalion,#1,#2,6,5,#3,#4}},
ff/.style args={#1,#2,#3,#4,#5}{/
fu={#1,#2,#3,2,5,3,#4,#5}},
hq/.style args={#1,#2,#3,#4,#5}{
cu={headquarters, ,#1,#2,#3,0,1,#4,#5}},%
hqgbg/.style args={#1,#2,#3,#4}{
hg={brigade,#1,#2,#3,#4}},
hqregt/.style args={#1,#2,#3,#4}{
hg={regiment,#1,#2,#3,#4}},

4.4 The actual units

Above we defined templates for the various units. These
templates saves us a lot of trouble when defining the
actual units. Below we will make the units for each
faction in the game. We will define them as TikZ/PGF
styles, just like we did for the templates.

Above we said we want to make double sided
counters. We will get back to the back-side
(flipped) versions of the counters in a mo-
ment.

4.4.1 Side A

Below we will define the units without much commen-
tary. Note that we use the style a for all our units so
that they get the right style. Note that we pass the sin-
gle argument #1 as the turn of appearance to all units.
This will be used when generating an Order of Battle
later on.

\tikzset{

hq/.style ={a,hg={corps,, ,A2,#1}},
1 hgbg/.style ={a,hgbg={1,,A2,#1}},

1 11g ibn/.style={a,mi={I-LG,1,D3,#1}},
1 1gh ibn/.style={a,mi={I-GH,1,C2,#1}},
1 2jd ibn/.style={a,mi={II-JD,1,A2,#1}},

I

PP oo

>
N

n=

Al

o=
D

0-1 0-1 235 1-0
D3 A2
HE,= B o
4-4 6-4 +1
C2 D2
=g LA
4-4 6-5

>
)

1-JD
1

T
'

>
=

1

N
|
(&, ]

Figure 7: Faction A organisational chart

1 1 abn/.style ={a,ff={battalion,1,1,Al,#1}},
2 hgbg/.style ={a,hgbg={2,,C2,#1}},%

2 1jd abn/.style={a,ar={I-JD,2,A2,#1}},%

2 3gh rbn/.style={a,re={I-JD,2,D2,#1}},%
aregt/.style={a,ff={regiment,,,A1,#1}},%
f/.style={a,cas={, ,#1}},%VR

b/.style={a,sb={, ,#1}}%SK

PR

}

Let us draw these units in what looks like an organisa-
tional diagram (Figure 7).

Before we go on to side B, we will make a macro that
contains a list of all our A side counters.

\def\alla{{’

a hq,
hqgbg,
11g ibn,
1gh ibn,
2jd ibn,
1 abn,
hqbg,
1jd abn,
3gh rbn,
aregt,
f,
b}}

[ T I R RN R R R G R
NNNR R RB B

4.4.2 Side B

Below we will define the units without much commen-
tary. Note that we use the style b for all our units so
that they get the right style. Note that we pass the sin-
gle argument #1 as the turn of appearance to all units.

(© 2022, Christian Holm Christensen, licensed under the CC-BY-SA 4.0



This will be used when generating an Order of Battle

later on. ¢

\tikzsetq{

b

oo o oo oooooooo oo o oo oo o oo oo

Let us draw these units in what looks like an organisa-

hq/.style= {b,hg= {corps,, ,F6,#1}},

lg hqregt/.style= {b,hqregt={LG, ,F6,#1}},
lg ibn/.style= {b,in= {LG, ,F6,#1}},
k3 hqregt/.style=  {b,hqregt={K3,,E7,#1}},
k3 31 abibn/.style= {b,ab= {31,K3,E7,#1}},
k4 hqregt/.style=  {b,hgregt={K4,,F10,#1}},

k4 abibn/.style= {b,ab= {NL,K4,F10,#1}},

p4 hgregt/.style=  {b,hqregt={P4,,D7,#1}},
p4 41 cabn/.style= {b,ca= {41,P4,D7,#1}},
p4 42 cabn/.style= {b,ca= {42,P4,D7,#11}},
p7 haregt/.style=  {b,hqregt={P7,,D4,#1}},
p7 71 ibn/.style= {b,mi= {71,P7,D4,#1}},
p7 72 cabn/.style= {b,ca= {72,P7,D4,#11}},
i13 hqgregt/.style= {b,hqregt={I13,,D8,#1}},

i13 131 ibn/.style= {b,in= {131,I13,D8,#1}},
i13 132 ibn/.style= {b,in= {132,113,D8,#1}},

p18 hqregt/.style= {b,hqregt={P18,,F5,#1}},

pl8 181 cabn/.style={b,ca= {181,P18,F5,#1}},

i19 hqgregt/.style= {b,hqregt={I19,,F10,#1}},

i19 191 cabn/.style={b,ca= {191,I19,F10,#1}},
i19 192 cabn/.style={b,ca= {192,I19,F10,#1}},

i21 hqgregt/.style= {b,hqregt={I21,,D10,#1}},

i21 211 ibn/.style= {b,in= {211,121,D10,#13}},
i21 212 ibn/.style= {b,in= {212,121,D10,#13}},

f/.style= {b,cas {F17,BL,#1}},
b/ .style= {b,sb= {F7,SA,#1}}

tional diagram (Figure 8).

As before, we will make a macro that contains all B

counters.

\def\allb{{

}

“

}

}

b hg, b 1g hqregt, b 1g ibn,

b k3 hqgregt, b k3 31 abibn,

b p4 hqregt, b p4 41 cabn, b p4 42 cabn,
b p7 hqgregt, b p7 71 ibn, b p7 72 cabn,
b i13 hgregt, b i13 131 ibn,b i13 132 ibn,%
b £, b b%

,{¥,{},{% Empty turns

b p18 hgregt, b pl8 181 cabn,
1

b

»{

b

Bt

b

i21 hqregt, b i21 211 ibn, b i21 212 ibnj
L
k4 hqregt, b k4 abibnj

i19 hqgregt, b i19 191 cabn, b i19 192 cabn,

1

Note that this is defined as a list of lists, and some of
the lists are a little special. This is because we will reuse
this list over and over again, and in particular for the
Order of Battle charts. The point is that each element
of the outer most list correspond to a turn, starting with
turn “0”, or “At start”. Empty elements are thus turns
where there will be no reinforcements for the faction.

4. The units
F6 ~/\ L A\
TpP<m wdn
0-1 1-0 +1

=]
]

T
5
i

"
w
T
w
T
w
ﬁu
w

3-3
D4 ’ D8 ‘ F10 ‘ D10 ‘
| = . s
0-1 0-1 0-1 0-1
D4 D8 F10 D10
R S )~ EE ) I E )y~
4-4 2-3 3-3 2-3
D4 D8 F10 D10
B EE )~ E Y = E >
33 2-3 33 2-3

Figure 8: Faction B organisational chart

(© 2022, Christian Holm Christensen, licensed under the CC-BY-SA 4.0



The wargame tutorial

4.5 The flipped side of things

Well, really the flipped definitions of the units. The
flipped side of our unit counters will represent a “spent”
state, i.e., a state where the unit cannot attack and only
do limited manoeuvres. In this state, all units will have
a combat factor or zero and movement factor of 1. Thus,
we define a simple style that sets the factors

\tikzset{
flipped/.style={}
/chit/factors={chit/2 factors={0,1}},
/chit/upper left={},
/chit/upper right={}
}
}

Note that we give the explicit full path to the chits fac-
tors key. This is because we want to monkey patch our
units to have these new factors. We also clear the upper
left and right corners on the flip side.

Now, we’ll do a little hack. Previously, we defined the
a flipped and b flipped styles, but if you look closely,
we can see how we can automatically define the flipped
fill colours. Thus we make another style that does this.

\tikzset{%
£/.style={%
flipped,fill=pgffillcolor!50!white}}

With this, we can define the £1ipped state of all A coun-
ters.

\tikzset{/

a hq flipped/.style= {a hq
hgbg flipped/.style= {a
11g ibn flipped/.style=
1gh ibn flipped/.style= {a 1 1gh
2jd ibn flipped/.style= {a 1 2jd
1 abn flipped/.style= {a 1 1 abn
hgbg flipped/.style= {a 2 hgbg ,f},
1jd abn flipped/.style= {a 2 1jd abn,f},
3gh rbn flipped/.style= {a 2 3gh rbn,f},
aregt flipped/.style= {a aregt LI},

a f flipped/.style= {a,f},

a b flipped/.style= {a,f},

}

£},

£},

ibn,f},

ibn,f},

ibn,f},
£},

1 hqgbg
{a 1 11g

[CREN CI R O ORI CR CR O
N NN R R R

Let us draw the A side counters, front and back, using
the macro doublechits (Figure 9).

The above was produced by

\begin{tikzpicture}
\doublechits{\alla}{3}{0.04}
\end{tikzpicture}

We will use the macro \doublechits later on to make
our chit sheets. This works only because we define
the back sides of our chits to have the style ‘(front)
flipped’, which is why it is highly recommended to fol-
low this convention.

7
__: ; Front - >k - Back ; :__
D3 A2 A2
-0 B9 | 25 |25 |-
|44]o-1]0-1]0-1]0-1f0-1]
Al A2 c2
Lo | =T | B | 3 | =T~ | Lo -
|25 144]4a4l0-1f0-1]0-1]
D2 A2 c2
sz E=1 Y Bl Rl ST e
| 65]6-4]0-1f{0-1]0-1f[0-1]
Al
A | [l | [e]
L1 ]1-0]235 |01 N
! Front ->k- Badk ! !

Figure 9: All faction A counters, front and back

We do the same thing for the faction B counters.

\tikzset{%
b hq flipped/.style= {b hq, £},
lg hqregt flipped/.style= {b lg hqregt, £},
lg ibn flipped/.style= {b lg ibn, £},
k3 hqregt flipped/.style= {b k3 hqregt, £},

k3 31 abibn flipped/.style= {b k3 31 abibn, f},

k4 hqregt flipped/.style= {b k4 hgregt, £},
k4 abibn flipped/.style= {b k4 abibn, £},

p4 hgregt flipped/.style= {b p4 hqregt, £},
p4 41 cabn flipped/.style= {b p4 41 cabn, £},
p4 42 cabn flipped/.style= {b p4 42 cabn, £},
p7 hgregt flipped/.style= {b p7 hqregt, £},
p7 71 ibn flipped/.style= {b p7 71 ibn, £},
p7 72 cabn flipped/.style= {b p7 72 cabn, £},
i13 hqregt flipped/.style= {b i13 hqregt, f},

i13 131 ibn flipped/.style=
i13 132 ibn flipped/.style= {b i13 132 ibn, £},
pl18 hqregt flipped/.style= {b p18 hqregt, £},
pl8 181 cabn flipped/.style={b p18 181 cabn,f},
i19 hqregt flipped/.style= {b i19 hqregt, £},
i19 191 cabn flipped/.style={b i19 191 cabn,f},
119 192 cabn flipped/.style={b i19 192 cabn,f},
i21 hqregt flipped/.style= {b i21 hqregt, £},
i21 211 ibn flipped/.style= {b i21 211 ibn, f},
i21 212 ibn flipped/.style= {b i21 212 ibn, £},
b f flipped/.style= {b,f},

b b flipped/.style= {b,f}}

{b i13 131 ibn, f},

oo o oo o oo oo ooo oo o oo o oo oo

Let us draw the faction B counters, front and back, using
the macro doublechits (Figure 10).

The above was produced by

\begin{tikzpicture}
\doublechits{\allb}{3}{.04}
\end{tikzpicture}

4.6 Other counters

In principle one can make as many and different coun-
ters and markers as needed. Here, we will keep things
simple and only define a game turn marker. The package
wargame already defines one as shown in Figure 11.

(© 2022, Christian Holm Christensen, licensed under the CC-BY-SA 4.0



F6 F6 F6

L [ | B | B3 [ |£
|23foajoeafoa]oafoa]

D7 E7 E7

[T [T ||
lofi3]oafoaloafoa]

D4 D7 D7

i

s[o0]z | [0z | [eo=

o

?D
[y
ﬁﬂ
w
ﬁu
w
ﬁD
[y
ﬁb
[y
ﬁD
[y

o}
=}
o
&
o
&

113
72
P7
71
P7
71
P7
72
P7
113

?D
—
ﬁo
w
ﬁ;
S
ﬁD
—
ﬁb
—
ﬁD
—

=]
®
=]
®

F17
BL
132
113
131
113
131
113
132
113

T
(=}
™
w
i
w
ﬁD
[y
?D
[y

=
«a
w

~/\<

181 &
.P18 ”
p1s

F

\/

a

O

S
P18
181
.p1s

T
(O8]
7
[y
4_
—
7
—t
T
—

o
=
=)
=

212
&o
21 L
211
&c
21 L
121
121
211
121
212
m|21

|
(O8]
i
[68)
7
[y
7
el
7
[y
7
[y

F10 7|F10 6JF10 6

-l Ol Eml Eml B Gl Em
o1 ]a13forfo1fo-1]o1]

1 F10 7|F10 7 1

Figure 10: All faction B counters, front and back

Game
Turn

Figure 11: The wargame game turn counter

5. The board

Front_- >k - Back
Game| Game
Turn | Turn

Front - k- Back

Figure 12: Modified game turn, front and back

However, this has no flip side and we would like the side
to reflect the faction currently in turn

\tikzset{

game turn chit/.append style={a},

game turn chit flipped/.append style={b}
}

This modified game turn is shown in Figure 12.

5 The board

Designing the board is probably where one will spend
the most time. The wargame package is not omnipotent,
but tries to make it as simple as possible. However,
some artistic streak is a good thing, and familiarity with
TikZ /PGF is highly recommended.

The simplest thing one can do is to import an image and
superimpose hexes on top of that image. While often a
good solution, it does not always give the most pleasing
board.

The wargame package does not, in and of it self, pro-
vide fancy “modern” graphics (though it can be done).
Rather, off the shelf, it mimics classic wargames of yore
(Afrika Korps, D-Day, Russian Campaign, and so on).
That is, it uses rather simplified graphics.

For our game, we will have three kinds of terrain: Clear,
woods, and mountains. The map will have a lot of coast-
line, but the scale of the game is such that naval units
are not really called for. Indeed, the game focuses on
land combat with abstracted aerial support.

The first thing we do, is to decide a few things about
the map. We want to have the hexes automatically label
with alphabetic columns and numerical rows. We want
to start our rows and columns at 1 (the default is start-
ing at 0). By default, we want the hexes to be white
(for clear terrain). To set this up, we define some more
keys.

\tikzset{)
hex/short bottom columns=even,
hex/short top columns=odd,
hex/label is name,
hex/first row and column are=1,
every hex/.style={
/hex/label={auto=alpha column},
fill=white},
jyA

(© 2022, Christian Holm Christensen, licensed under the CC-BY-SA 4.0



The wargame tutorial

Note how we used the full path for the /hex/label key.
This will be important when we generate a VASSAL
module later on.

The key hex/label is name makes it so that every hex
on the board will be a named node. This means we can
refer to a hex in TikZ/PGF simply by its label. In fact,
we can use various anchors of the hex if we want to —
it is a node like any other node in TikZ/PGF.

The keys hex/short bottom column=even and hex/short to

is mainly used by the \boardframe macro to generate a
proper frame.

Having defined the settings, we can move on to the board
itself. We will do this in parts. This makes it easier
to get an overview of, and helps us in this tutorial to
explain what is going on.

The first thing we do, is define a macro that defines the
coast line of our map. We use the hexagonal coordinate
system provided by the wargame package, but we could
also have used general Cartesian coordinates.

Defining the coastline of a map can be quite
tedious. You may want to use some vector
graphics editor, say Inkscape, to do this. In
the wargame package you will find a Python
script to convert an SVG to TikZ/PGF
paths.

Alright, let’s make our macro to define the coastline.

\newcommand\coastline{%
(hex cs:c=1,r=1,v=SE)
—-(hex cs:c=1,r=1,e=SE)
--(hex cs:c=1,r=1,e=NE,0=.5)
--(hex cs:c=1,r=1,v=NW,0=.7)
-—(hex cs:c=1,r=2,v=W,0=.6)
--(hex cs:c=1,r=2,v=NW,0=.7)
--(hex cs:c=1,r=3,v=8E,0=.9)
--(hex cs:c=1,r=3,e=SE,0=.9)
--(hex cs:c=2,r=4,e=S,0=.7)
--(hex cs:c=2,r=3,v=NE,0=.4)
--(hex cs:c=2,r=3,e=S,0=.1)

--(hex cs:c=2,r=3,v=E,0=.8)
--(hex cs:c=2,r=3,e=SE,0=.8)
--(hex cs:c=2,r=3,v=SE,0=.6)
--(hex cs:c=2,r=2,v=NW,0=.2)
--(hex cs:c=2,r=2,e=SE)
--(hex cs:c=3,r=1,e=NE)
--(hex cs:c=4,r=2,e=N,0=.3)
--(hex cs:c=5,r=2,e=S,0=.6)
--(hex cs:c=5,r=2,v=SE,0=.9)
--(hex cs:c=7,r=3,v=E)
--(hex cs:c=7,r=1,v=E)
--(hex cs:c=6,r=1,v=E,0=2.5)

--cycle

(hex cs:c=3,r=2,v=W,0=.5)
--(hex cs:c=4,r=3,e=NW,0=.75)
--(hex cs:c=4,r=3,e=SW,0=.3)
—-(hex cs:c=4,r=2,e=NW,0=.7)
--(hex cs:c=3,r=2,v=SW,0=.4)

Figure 13: The coast line

--cycle
(hex cs:c=2,r=4,e=N,0=.8)
--(hex cs:c=2,r=4,v=E,0=.7)
--(hex cs:c=3,r=3,v=E,0=.8)
--(hex cs:c=4,r=3,v=NW,0=.6)
--(hex cs:c=4,r=3,e=NW,o0=.1)
--(hex cs:c=4,r=3,v=SE,0=.4)
--(hex cs:c=5,r=3,v=8W,0=.6)
--(hex cs:c=5,r=3,v=NE,0=.2)
--(hex cs:c=5,r=3,e=NE)
--(hex cs:c=6,r=4,v=8W,0=.3)
--(hex cs:c=5,r=4,v=E,0=1.7)
--(hex cs:c=6,r=5,e=N)
--(hex cs:c=6,r=6,v=E)
--(hex cs:c=7,r=6,v=NW,o0=.4)
--(hex cs:c=6,r=7,e=S,0=.2)
--(hex cs:c=6,r=7,e=NW)
--(hex cs:c=6,r=8,e=NW,0=.7)
--(hex cs:c=7,r=9,e=NE)
--(hex cs:c=6,r=10,v=E,0=2.5)
--(hex cs:c=7,r=10,v=E)
--(hex cs:c=1,r=10,v=W)
--(hex cs:c=2,r=4,v=W,0=2.5)
--(hex cs:c=2,r=5,v=8W)
--cycle

}

The coast line is shown in Figure 13'°

As you can see, it is pretty simple. Not too many details

10 Any resemblance to any actual location is, erhm, accidental?

© 2022, Christian Holm Christensen, licensed under the CC-BY-SA 4.0



10

about the nooks and crannies. Now we want to define
some colours that we will use on the map. As mentioned
above, we will have some sea, and we will have some sur-
rounding neutral countries. Let us define some colours
for these things.

\definecolor{sea}{HTML}{18b5db}
\colorlet{neutral}{gray!25!white}
\colorlet{coast}{black}

OK, with that out of the way, we start on the hexes in
earnest. We define the macro \hexes to produce our
hexes within our map.

\newcommand\hexes [1] [1{

We have defined this macro to take a single optional
argument. We wont use that here, but it might come in
handy at some later point.

The first thing we do, is to fill the entire map with sea.

\fill[sea] (-1.000,-0.866) rectangle(10.,15.580);

Then we use the macro \coastline to define a path
that we may use over and over again.

\path[save path=\coast]\coastline;

Next up, we want to draw hexes that are on the coast
line but also has land parts in it. This is so that the
hexes are complete and get a proper label on it. We
define the fill to be the sea colour, and the lines labels
to be white

\begin{scope}[
every hex/.append style={white,fill=sea},
hex/label/.append style={color=whitel}]
\hex(c=1,r=1); \hex(c=1,r=2);
\hex(c=1,r=3);
\hex(c=2,r=2);
\hex (c=2,r=4);
\hex(c=3,r=2);
\hex(c=4,r=2);
\hex(c=5,r=3);
\hex(c=6,r=4);
\hex(c=6,r=6) ;
\hex (c=6,r=8) ;
\hex(c=7,r=6);

\end{scope}

\hex(c=2,r=3);

\hex(c=3,r=3);
\hex(c=4,r=3);
\hex (c=5,r=7);
\hex(c=6,r=5);
\hex(c=6,r=7);
\hex (c=6,r=9) ;
\hex(c=7,r=9);

Note that we use the .append style handler so that
we get the setting from above here too (labels, among
other things). These amended styles only have effect
inside the scope. Once we leave the scope, then the old
settings are restored.

We draw a compass needle.

\draw[white,-{Stealth[]},
scale line widths,
line width=1mm]
(hex cs:c=7,r=4,v=SE) -- ++(110:2)
node [midway,
font=\sffamily\bfseries\LARGE,

5. The board

transform shape,
rotate=-90,sloped] {N};

Since the areas where we do not add hexes are considered
neutral countries in this game, we fill the whole coast
line with the previously defined neutral colour.

\settosave{\coast}
\fill[neutral];

Here we have the first use of the saved path \coast. We
make that the current path by calling \setosave — a
small utility in the wargame package.

We can now add the actual hexes. Some of the hexes
will represent different terrain, and that will be clear
from the definitions. We will put our definitions inside
a scope, and the first thing we do in that scope is to clip
everything to our coast line. This will be the second use
of \coast.

\begin{scope}

\settosave{\coast}
\clip;

\hex(c=1,r=1) ;\hex(c=1,r=2) ;\hex(c=1,r=3);

Note that we use the hex cs coordinate system. We
specify the column (c) and the row (r) of each hex. We
can use longer forms, of the keys if we want.

The southern border of A factions country needs a little
special attention. We clip the drawn hex, and draw the
border. In fact, we draw the hex twice, first time with
a white outline and the neutral fill colour. This is so
that the full hex will be drawn, even it is only partially
within the map area.
\hex [white,fill=neutral,label=] (c=2,r=2);
\begin{scope}
\clip(hex cs:c=2,r=2,v=SW)
--(hex cs:c=2,r=2,v=E)
--(hex cs:c=2,r=2,v=NE)
--(hex cs:c=2,r=2,v=NW)
--(hex cs:c=2,r=2,v=W)
--cycle;
\hex(c=2,r=2);
\end{scope}
\draw[coast] (hex cs:c=2,r=2,v=SW)
--(hex cs:c=2,r=2,v=E);

Note that our clipping path is defined in the hex cs
coordinate system, and how we have retrieved vertex
coordinates via the key v.

Now we come to some other terrain: woods and moun-
tains.

\hex (c=2,r=3) ;\hex(c=2,r=4) ;\hex(c=2,r=5);

\hex [terrain=mountains] (c=2,r=6) ;

\hex [terrain=mountains] (c=2,r=7);
\hex [terrain=mountains] (c=2,r=8);

Again, we do not want to draw the hex in the neutral
country to the south, so we clip this hex too.

(© 2022, Christian Holm Christensen, licensed under the CC-BY-SA 4.0



The wargame tutorial 11

\hex [white,fill=neutral,label=] (c=4,r=2);
\begin{scope}

\clip(hex cs:c=4,r=2,v=W)

--(hex cs:c=4,r=2,v=NE)

--(hex cs:c=4,r=2,v=NW)

--cycle;

\hex(c=4,r=2);
\end{scope}

\hex(c=3,r=2); \hex(c=3,r=3);
\hex[terrain=woods] (c=3,r=4) ;
\hex(c=3,r=5);

\hex [terrain=woods] (c=3,r=6);
\hex[terrain=woods] (c=3,r=7);
\hex[terrain=mountains] (c=3,r=8);
\hex [terrain=mountains] (¢c=3,r=9);

In the next step, we will add a town to the map.

\hex [town={
place={(hex cs:c=1,r=1,e=SW,0=.5)1}}]
(c=4,r=3);
\hex [terrain=woods] (c=4,r=4);
\hex(c=4,r=5);
\hex[terrain=woods] (c=4,r=6) ;
\hex[terrain=woods] (c=4,r=7);
\hex [terrain=woods] (c=4,r=8);
\hex[terrain=woods] (c=4,r=9);
\hex(c=4,r=10);

\

The place key specifies the placement of the town rela-

tive to the hex centre. Figure 14: Our hexes

For the rest of the map, there isn’t much new.

\heX(C=5,rf3)$ board into zones. These zones can be dif-

tiex E;‘irrglmg‘OdS] (e=8,x=4); ferent game specific places, e.g., a place to
ex c=5,r=5); .. .

\hex [terrain=woods] (c=5,r=6) ; keep eliminated units, a place for the turn

\hex [terrain=woods] (c=5,r=T7) ; track, and so on. We will take advantage of

\hex[terrain=woods] (c=5,r=8); this in our board definition by applying some
\hex [terrain=woods] (c=5,r=9) ; speciﬁc styles.

\hex[terrain=woods] (c=6,r=4) ;

\hex [terrain=woods] (c=6,r=5); Below we customise the board frame, and some other
\hex [town={ things on the board.
place={(hex cs:c=1,r=1,v=E,0=.3)1}}]
(c=6,r=6) ; \colorlet{framebg}{gray!50!white}
\hex (c=6,r=7); \hex(c=6,r=8); \colorlet{titlefg}{gray!50!black}
\hex [terrain=woods] (c=6,r=9) ; \tikzset{
\hex [terrain=woods] (c=6,r=10) ; hex/board frame/.style={
scale line widths,
\hex(c=7,r=4); \hex(c=7,r=5); line width=.5pt,
\hex(c=7,r=6); \hex(c=7,r=7); draw=black},
\hex(c=7,r=8); \hex(c=7,r=9); board frame/.style={/
\end{scope} anchor=south west,
} transform shape,
scale line widths,
That concludes our hexes. Let us draw it (Figure 14). line width=1pt,

draw=black,

This only defines the map. Now we would like to make £i11=framebg

the full board. Typically one want to add a turn track minimum width=14cm,%
and some other stuff. Here, we will keep it fairly simple minimum height=19cm
and just add a turn track. ¥,

turn/.style={

.. . scale line widths,
This is where we need to start to consider line width=.5pt,

VASSAL. Essentially, VASSAL can split a fill=vhite,

(© 2022, Christian Holm Christensen, licensed under the CC-BY-SA 4.0



12

draw=black,
text=gray,
minimum width=1.4cm,
minimum height=1.4cm,
text width=1.2cm,
align=center,
font=\sffamily\bfseries\huge,
transform shape,
anchor=north east

1,

title/.style={
text=titlefg,
font=\sffamily\bfseries\Huge,
scale=1.5,
inner sep=0pt,
outer sep=0Opt,
transform shape,

1,

sub title/.style={
text=titlefg!75!white,
font=\sffamily\bfseries\normalsize,
scale=1.5,
transform shape,
text width=5cm,
inner sep=0Opt,
outer sep=0pt,
align=right

}

}

Let us start the board. The wargame package has a
tool \boardrame which will put a frame around the map
as defined by hex coordinates. It also output the map
bounding box to the standard log file. So running BKTEX
once with this macro in effect will give us some useful
information.

We will define the board in two steps. First we define an
environment which holds the map, turn track, and title
of the game, and after that we will add an environment
that wraps it in a TikZ/PGF picture.

We define the board as an environment, so that we may
put things on the board in our explanations of the rules.

\newenvironment{innerboard} [1] [1{%
\node [board frame] (frame) {};

This adds in our frame of the whole map as defined by
the style above.

Also note that we made our outer frame a node. This
is so that we can refer to its anchors without too much
knowledge of its size.

We have made our frame a little bigger than the hex,
so that we may add a turn track. We will at it at the
top, and we will add 10 turns. Here, we make use of
TikZ /PGF loops, and they do the trick for us.

We will make use the style zone scope with the name
Turns. This will be made into a VASSAL zone that has
a coordinate system that identifies it (at least by conven-
tion) as turn track. We will in fact deploy a little trick
here to make the module even more complete. This is

5. The board

because we add the style zone point to the turn num-
ber nodes below, and the first one will have the name
of the game turn marker. This means that the game
turn marker will automatically be placed there. If the
below is a little complicated for you, take a look at the
alternative below the code

\begin{scope}[
shift={($(frame.south east)+(-0.5,.5)$)}]
\begin{scope} [zone scope=Turns]

\foreach \i in {1,...,10}{%
\pgfmathparse{\i*1.65-.225-.7}
\edef\y{\pgfmathresult}

\ifnumil=\i
\def\tname{game turn}
\else
\def\tname{T\i}
\fi
\node [turn,zone point={\tname}{-.7}{\y}]
at (0,\y+.7) {\i};

}

\end{scope}
\end{scope}

A simpler alternative would be

\begin{scopel}[
shift={($(frame.south east)+(-0.5,.5)$)}]
\begin{scope} [zone scope=Turns]

\foreach \i in {1,...,10}{%
\node [turn] at (0,\i*1.65-.225) {\i};
}
\end{scope}
\end{scope}

We also add a title using the styles we defined above.
Note, consistent use of TikZ/PGF styles makes it very
easy to change things consistently throughout the game.

\node [below right=5mm and 5mm of

frame.north west,title]{A Gamel};

\node [below left=5mm and 5mm of

frame.north east,sub title]{A tutorial in the\\
{\color{white}wargame} packagel};

With this, we are left with adding in the map.

\scope[shift={(.5,.5)}]
\scope[shift={(1,0.86603)},
zone scope=Hex]
\hexes
\boardframe(c=1,r=1) (c=7,r=10)
% Reported by the above
% Board Frame:

% BBox: (-1.0,-0.86603)x(10.0,15.5885)
%  WxH: (11.0x16.45453)
% NCxNR (1,1)x(7,10)

Above, we see the output from \boardframe. This in
turn informs us how to set the offset of the inner most
scope. We also see that the map is 11 x 16.45453 cm big,
which means our board will easily fit on standard paper
(A4 or, less standard, Letter).

(© 2022, Christian Holm Christensen, licensed under the CC-BY-SA 4.0



The wargame tutorial

The offset of (—1,0.86603) is not surprising
when you know that the radius r of the cir-
cumscribed circle of the hexes is 1 cm, and
that the first hex centre is placed in (0, 0).
The horizontal offset of -1 is just that ra-
dius r, and the vertical offset is rsin 60° =
V3/2 = 0.86603.

The outer most scope translates the hex bmm in from
both edges so that we may draw a nice frame around
the map.

The style zone scope=Hex will make this area a zone in
VASSAL and it will have a hex grid (because its argu-
ment contains the sub string hex) attached to it.

This end the start of the environment. Next, we define
the end of it. This simply closes the scopes and the
TikZ/PGF picture.

H
\endscope¥,
\endscope’,

}

This ends the environment that defines the board
proper. Now we wrap it in another environment that
will put the map inside a TikZ/PGF picture.

\newenvironment{board} [1] [1{%
\tikzpicture [#1,zoned]
\innerboard}{%
\endinnerboard,
\endtikzpicture}

The style zoned on the TikZ/PGF picture ensures
that we will get a zoned map when generating the
VASSAL module. Note that we used the TgEX-like
form of the environment \tikzpicture, rather than
\begin{tikzpicture}, so that the various \ends does
not mess up things.

We can draw the final board (Figure 15).

5.1 Adding units to the board

We have defined our board as a environment so we can
add units to it without much hassle. Let us add the
starting units at the starting positions. Since we will
be stacking chits, we will use the \chitstack macro for
this. Note that this macro expects code to produce the
chits (rather than the unit styles). Therefore we must
add in some \noexpand in front of the \chit command.

The board with the “At-start” units in place are shown
in Figure 16. The first part of this was made with

\begin{board}
\stackchits(A2)(.2,.2){}
\noexpand\chit[a hq],

\noexpand\chit[a 1 hqgbg]l,

13

A tutorial in the
package

Figure 15: The final board

A tutorial in the
package

Figure 16: The board with units at their starting posi-
tions

© 2022, Christian Holm Christensen, licensed under the CC-BY-SA 4.0



14

\noexpand\chit[a 1 2jd ibn],
\noexpand\chit[a 2 1jd abn]}
\chit[a 1 11lg ibn] (D3);

The first argument to \stackchits is where to put the
stack. The second is the offset applied to each stack
unit in succession (obviously the first offset is (0,0)).
The third argument is the list of chits to add to the
stack.

Note that we use the hex labels, rather than the hex co-
ordinates, to place the units and stacks of units, thanks
to hex/label is name.

We have made the counters and board for the game.
What remains is the various tables (and or of course the
rules).

5.2 Clipped boards

We are not quite done with the board just yet. We want
to make another environment which will clip to a spec-
ified area of the map. We will reuse our innerboard
environment so that everything is consistent. Let us
go ahead and define the environment, and then see later
how it is used. We define our environment as two macros
\clipped and \endclipped so that we can use paren-
thesis for our arguments.

\tikzset{
clip board/.style={gray,line width=.5pt}}
\newcommand\clipped[1] [1{\doclipped [#1]}
\def\doclipped [#1] (#2) (#3){
\def\tmp@clip@a{#2}
\def\tmp@clip@b{#3}
\tikzpicture [#1]
\scope
\clip (#2) rectangle (#3);
\scope [shift={(-.5-1,-.5-0.86603)1}]
\innerboard}
\def\endclipped{%
\endinnerboard
\endscope
\endscope
\draw[clip board] (\tmp@clip®@a)
rectangle (\tmp@clip®@b);
\endtikzpicture}

Our environment clipped takes 3 arguments. One is
optional and is keys to pass to the TikZ/PGF picture
environment. The two others are the coordinates (rel-
ative to the hexes) of our clipping rectangle. Let us
illustrate this with an example — see Figure 17.

The figure was produced by the code

\begin{clipped}(hex cs:c=2,r=2) (hex cs:c=5,r=5)
\end{clipped}

Note that we must use the hex coordinate system. When
we make the clipping path, the nodes of the hex map has

6. The charts

Figure 17: Example of using clipped.

Figure 18: Example of using clipped.

not yet been defined. We can use this to illustrate things
on the map. For example, Figure 18 show that B P7/72
CABN attacks A 2/1JD ABN with the code

\begin{clipped} (hex cs:c=2,r=3) (hex cs:c=5,r=5)
\chit[b p7 72 cabn] (D5);
\chit[a 2 1jd abn](C4);
\draw[hex/attack] (D5)--(C4);

\end{clipped}

Note that inside the environment we can use hex labels
as coordinates.

6 The charts

We will not go into details about how to make tables in
IXTEX. There are plenty of excellent resources out there
for that purpose. Here we will make three tables: The
combat resolution table (CRT), the terrain effects chart
(TEC), and the Order of Battle (OOB) chart!! — all
of which in some respect uses elements of the wargame
package.

"1n some games this is called the Order of Appearance (OOA)
chart.

(© 2022, Christian Holm Christensen, licensed under the CC-BY-SA 4.0



The wargame tutorial

15

6.2 The TEC

In this table we will use small version of hexes to make
a nice table. The definition is as follows.

\newcommand\tec{%
\begin{tabular}{lcl|ccl|}

Die Odds

roll | 1:3 1:2 1:1 2:1 3:1 4:1
1 AE AR AR EX DR DR
2 AE AR EX EX DR DR
3 AR EX EX DR DR DE
4 AR EX EX DR DR DE
5 EX EX DR DR DE DE
5 EX DR DR DE DE DE

Table 1: The combat resolution table

For all the tables, we would like to use the colortbl pack-
age to colour the rows. Here, we make some short hands

for doing just that.

\colorlet{headbg}{gray!50!white}
\colorlet{altbg}{gray!15!white}
\newcommand\headrow{\rowcolor{headbg}}
\newcommand\defrow{\rowcolor{white}}
\newcommand\altrow{\rowcolor{altbg}}

6.1 The CRT

The combat resolution table is in some sense a straight

forward IXTEX table. Here’s the definition

\newcommand\crt{%
\begin{tabular}{|cl|ccccccl|}
\hline
\headrow
\textbf{Die}
& \multicolumn{6}{c|}{\textbf{0dds}}
A\
\headrow
\textbf{roll}
& \textbf{1:3}
& \textbf{1:2}
& \textbf{1:1}
& \textbf{2:1}
& \textbf{3:1}
& \textbf{4:1}
\\
\hline
\defrow
1 & AE & AR & AR & EX & DR & DR \\
\altrow
2 & AE & AR & EX & EX & DR & DR \\
\defrow
3 & AR & EX & EX & DR & DR & DE \\
\altrow
4 & AR & EX & EX & DR & DR & DE \\
\defrow
5 & EX & EX & DR & DR & DE & DE \\
\altrow
5 & EX & DR & DR & DE & DE & DE \\
\hline
\end{tabular}}

And what it looks like is shown in Table 1

\hline
\headrow
\multicolumn{2}{|c|}{\textbf{Terrain}}
& MF
& CF\textsuperscript{\dag}
A\
\hline
\defrow
\tikz[scale=.5]{\hex[label=]}
& Clear
& 1
& —_—
\\
\altrow
\tikz[scale=.5]{\hex[label=,terrain=woods]}
& Woods
& 2
& \texttimes 2\textsuperscript{x*}
\\
\defrow
\tikz[scale=.5]{\hex[label=,terrain=mountains]}
& Mountains
& Stop
& \texttimes 2\textsuperscript{x*}
A\
\altrow
\tikz[scale=.5]{
\hex[label=,fill=sea] (c=1,r=1);
\begin{scope}
\clip
(hex cs:c=1,r=1,v=NW)
--(hex cs:c=1,r=1,v=W)
--(hex cs:c=1,r=1,v=SW)
--(hex cs:c=1,r=1,e=8)
--(hex cs:c=1,r=1,v=W,0=.5)
--cycle
(hex cs:c=1,r=1,e=N)
--(hex cs:c=1,r=1,v=NE)
--(hex cs:c=1,r=1,v=E)
--(hex cs:c=1,r=1,e=8E)
--(hex cs:c=1,r=1,v=E,0=.4)
--cycle

\hex[label=] (c=1,r=1);

\end{scope}

}

& Coastal

& 2

& \texttimes2\phantom{\textsuperscript{*}}

\\

\hline

\multicolumn{4}{1}{\textsuperscript{\dag}
\emph{Defender} modifier}\\

\multicolumn{4}{1}{\textsuperscript{*}
\infantrymark{}\, \pgmark{} \emph{only},
unless \artillerymark}

\\

\end{tabular}

(© 2022, Christian Holm Christensen, licensed under the CC-BY-SA 4.0



16

Terrain MF CFf
<:> Clear 1 —
Woods 2 x2"
&

Y Mountains | Stop  x2”
@ Coastal 2 X2

T Defender modifier
" XIE only, unless =]

Table 2: The terrain effects table

The result is in Table 2. Note the use of \infantrymark
to put in X in the table. The wargame package defines
a number of macros like this.

6.3 The OOB

We like to make an OOB chart that we can place our
unit counter on so we can keep track of which units
are available when. In our game, all A faction units
start already on the board. The B faction, however, has
most of its reinforcement troops way up north, and will
therefore bring them on the map piecemeal.

We will use the wargame macro \oob to make our OOBs.
This macro uses the pic chits/oob turn to make the
turns. The default setting is not what we want, so we
redefine that picture. In particular, we want turn “0”
to say “At start”.

We also want to reuse the style turn we used to make
the turn track on the board, but modify it a bit to
fit our purposes here. We therefore define the style
oob turn which derives from turn, but scale it down
70%, change the anchor, and add some extra space out-
side of it (outer sep).

\tikzset{
oob turn/.style={
turn,
transform shape,
anchor=east,
outer sep=2mm,
scale=.7},

}

Our modified chit/oob turn picture will check if we
get an empty turn number, or the special “0” turn, and
then put in a node with the appropriate contents. Note
that we define two pictures, one which actually puts in
the turn, and one that puts in nothing, so when we make
the combined OOB we only output the turns once. We
then default chit/oob turn to the first picture

\tikzsetq{

6. The charts

0
N
O
@
>
N

A2

g 5 [ 7
4-4 | 4-4 | 0-1 | 0-1 ||stort
A2 c2 Al A2

[S]

1-JD
2
2
E
1
11-JD
1

ﬁh
S
ﬁ:
—
N
(&,
T
S

=}
N

D
§:

A

4_

T
(=}
N

|
(&}
T
(&}

>

Figure 19: Faction A OOB

oob turn real/.pic={}
\def\tmp{{\Large At start}}
\ifx|#1|\else’
\ifnumO=#1\else’,
\def\tmp{#1}%
\fi%
\fij
\node [oob turn,transform shape]l{\tmp};
},
oob turn empty/.pic={},
}
\newcommand\oobrealturn{%
\tikzset{
pics/chit/oob turn/.style=),
{oob turn real=##1}}}
\newcommand\oobemptyturn{},
\tikzset{
pics/chit/oob turn/.style=}
{oob turn empty=##1}1}}
\oobrealturn

Let us see how this looks for both factions. Factions A
and B are shown in Figure 19 and 20, respectively.

These were done with

\begin{tikzpicturel}[oob turn/.append style={anchor=west}]
\oob*{\alla}{4}{1.24}{0}

\end{tikzpicture}

\begin{tikzpicture}
\oob{\allb}{4}{1.24}{0}

\end{tikzpicture}

Note that the stared version \oob* puts out the coun-
ters right aligned. This is also why we append the style
oob turn to be anchored to the west.

The first argument to \oob is the list of lists of counters.
This is why we defined \alla and \allb in the way we
did. The second argument is the distance between each
counter. Since the counters are 1.2cm wide, we gave
them a little extra space between them by setting the
second argument to 1.24 (cm). The third argument is
the spacing between turn rows. Above we have set that
to 0 (cm), but that we will change in the real OOB chart.

And that’s what we will do next. This will be rather
wide, so we when we show it in a minute, we will do
so in a wide table (leaving the two-column layout for a

© 2022, Christian Holm Christensen, licensed under the CC-BY-SA 4.0



The wargame tutorial 17

minute).

\newcommand\inneroob[1] [1{%

\node [board frame,anchor=north] (oob frame)

at (0,2.5) {};%

% Game title

\node [%
below right=bmm and 5mm of oob frame.north west,
title,scale=.8]{A Game};

% Chart title

\node [%
below left=5mm and 5mm of oob frame.north east,
sub title,scale=1.2,transform shapel{%
Order of Battlel};

F6 F6 F6 E7 % Turn title
At ﬁ Sﬁ Sg Qﬁ \node [font=\sffamily\bfseries\Large,
start 0-1 0-1 2-3 0-1 anchor=south,
E7 D7 D7 D7 white,transform shape] at (0,1) {Turn};
:|X|‘Q ] | [ | =k oo
1-3 ] 0-1 | 33| 3-3 \begin{scopel (X
=i oal Ba T transform shape,
Eﬁ :@E ﬁE gﬁ :;‘Sf::i‘r(lflazp(e)r)u}i style={anchor=west},%
0-1)44 33|01 zone scope=A 00BlY%
Esgm 2‘&,,, SN\ =L\« \oobemptyturny,
AR A= wPHE | BERe \oob*{\alla}{4}{1.4}{.2}%
2-3 2-3 1-0 +1 \end{scopel/,
YA
1 \begin{scope}[%
transform shape,
shift={(1.4,0)},
2 zone scope=B 00B]Y
\oobrealturny
F5 3|[F5 3 \oob{\allb}{4}{1.4}{.2}%
3 Eﬁ 55 ;end{scope}%
0-1 | 3-3 3
D;oﬁ ‘ I'):m ; ?:lez; \newcommand\fulloob[1] [1{%
4 B N = a \begin{tikzpicture} [#1,zoned]%
0-1J]2-3 |23 \inneroob
\end{tikzpicturel}}

A couple of things to note.

F10 6| F10 6
6 §E 2‘|X§ We put everything inside a TikZ/PGF picture with the
0-1 | 1-3 option zoned so that we will get a zoned map in VAS-
FI0,, 7|Fl0,, T7IF0, 7 SAL. We also add the zones A 00B and B 00B via the
7 §#| ?«’Fé?lg 2|3"5|°=‘ key zone scope. We will need to adjust the grids of
0-1J3-3] 33 the zones later on. Another side effect of using \oob is

that each turn will be marked as a “region” of a “re-
gion grid” in in VASSAL, so that the each counter will
be automatically placed in its place on the OOB in the
VASSAL module.

Secondly, we reuse our board frame, title, and sub title
styles to make the OOB come out in similar manner as
the board. We do adjust the font sizes a bit though. We
have also made the OOB the same size as the board so
that they stack nicely.

Figure 20: Faction B OOB

Finally, when we make the faction A oob, we turn off
generation of the turn numbers. This is so we do note
produce those twice.

The final OOB is shown in Figure 21. This was produced

(© 2022, Christian Holm Christensen, licensed under the CC-BY-SA 4.0



18
A Game Order of Battle
EEERE [ EEEE
0-1 5‘"‘ 0-1 0-1 2-3 0-1
B (s
6-4 0-1 225 1-3 0-1 3-3 3-3
alAE &
1]|1-0]| 2% |65 0—1
=
23
BiE[E
4] - Zg; B
o1l 23|23
C B
01|13
SR
Figure 21: The OOB
with
\fulloob

7 Ending the package

At the end of the package we should end with the marker
\endinput.

\endinput

This is the end of the package. We will do a little more
in the main document.

8 Rules

We will not write any rules for this demonstration game.
The focus of this tutorial is how to use the wargame
package, not how to design a game.

The wargame package does however have a number of
tools that helps the developer write the rules. We’ve
already seen some of them in action. For example, we
saw how to add stacks of units to a board in Section 5.1
or how to make board clippings to show a zoom of the
map (Section 5.2).

Figure 18 showed how we can illustrate an attack, for
The package also provides means to indicate
retreats, advances, and

example.
eliminated units, movement,

7. Ending the package

much more. The manual gives a lot more information
about this.

9 VASSAL module

As already mentioned several times in this tutorial, we
can use the definitions of maps, counters, and charts to
generate a VASSAL module.

VASSAL' is a cross-platform'® tool for
playing wargames against other humans or
solitaire. One can do Play-By-E-Mail (PBEM)
or online.

The trick is to prepare a separate TEX document, say
export.tex as in this tutorial, which exports the images
as single pages. Then, the Python script wgexport.py
distributed with the wargame package picks up this out-
put (export.pdf and export.json) and generates a
draft VASSAL module.

In addition, you can supply a Python script, say
patch.py, which will be run on the draft module so that
you fix things up in the VASSAL module. In this way,
your VASSAL module will likely need very little hand
editing (if at all), and will be robust against changes
in the ITEX code'.
familiarity with Python, which is time well spent.

This of course requires a bit of

Let us get into it.

9.1 The export.tex file

This file will output all the images to a PDF, (ezport) . pdf
along with meta information to a JSON'® file (export) . json.
This is relatively simple to do.

We need to use the document class wgexport, so lets go
a head and load that.

\documentclass[11pt]{wgexport}

Make sure you give the right font size as argument.

This is where it pays off that we put all our definitions
of counters, board, charts, etc. into a separate package.
To import these, we simply use that package here'®. So
we load the package and start our document.

\usepackage{game}
\begin{document}

2https://vassalengine.org

131t is written in Java, meaning it runs almost everywhere, ex-
cept on i0OS and Android

14 Assuming you keep your Python patch.py script up to date.

15 JavaScript Object Notation

161f we hadn’t made that package, we would have to repeat the
definitions in some way. Very error prone

(© 2022, Christian Holm Christensen, licensed under the CC-BY-SA 4.0


https://vassalengine.org

The wargame tutorial

Now the body of the document will simply consist of
a list of images, one for each side of each counter, the
board, charts, and so on. We need to put everything
into the environment imagelist which will keep track
of our meta data.

\begin{imagelist}

So far so good. The first thing we will output are the

19

By default, odds markers must be placed “by-hand”, but
via the VASSAL preferences it is possible to calculate
the odds and show them when the battle is declared. By
default, this calculation will only be concerned with the
combat factors of the involved units, and features such
as terrain is ignored. However, with a bit of Python
skill, one can flesh out the implementation of the game
rules in the optional patch (Python) script. We will not

counters. For that we will use the macro \doublechitimagd@ that here, as a it is a little beyond the scope of this

(if we had single sided counters, we would use \chit images‘}l.ltorial-

This macro takes two arguments: The list of counter def-
initions and the faction of the chits. Let’s go ahead and
make those for factions A and B, and the special faction
“Markers” which will only be the game turn counter.

\doublechitimages[A] [chit drop shadows]{\alla}
\doublechitimages[B] [chit drop shadows]{\allb}

Right, so that made our counter images and the asso-
ciated meta data. Next thing is to add our board. For
that, we use the environment boardimage. Inside that
environment we must draw the board. The environment
takes one optional argument which classifies the board.
Meaningful classifications are board (default) and oob

\doublechitimages [Markers] [chit drop shadows]{{game turn (fﬁ)ftQOBS' The first mandatory argument is the name

Again, the macros we made for the counters comes in
handy. Note that we have used it twice so far: For
the OOBs and here for the VASSAL module. We will,
in fact, use them one more time to create the counter
sheet.

To automatically make “battle markers” — markers
that identify individual battles by placing a numbered
marker on top of the combatants, we can use the macro
battlemarkers. It takes one argument, which is the
number of unique markers to make and add. The mark-
ers are round yellow circles with a number in them!'”.

\tikzset{}
\battlemarkers[marker drop shadows]{12}
\tikzset{every battle marker/.style={}}

Furthermore, we can add “odds” and battle result mark-
ers. Odds markers can be placed via the battle mark-
ers context menu, and then later be replaced by re-
sult markers via the context menu of the odds mark-
This is done via the macros \oddsmarkers and
\resultmarkers. Both macros accept a list of options
(odds and results, respectively) with a possible back-
ground colour to use in the markers.

ers.

\oddsmarkers [marker drop shadows]{/
1:3/red!25!white,%
:2/red!'15'white, %
:1/orange!15!white,7
:1/white,%
:1/green!15!white,
4:1/green!25!white}
\resultmarkers[marker drop shadows]{
AE/red!50!white,
AR/red!25!white,
EX/white,
DR/green!10!white,
DE/green!25!white}

W N~ =

17This can of course be customised as everything else can.

of the board (more or less free form text, except any
of “./\?"” should not be used. The second mandatory
argument is a sub-category, and is mainly reserved for
future use.

\begin{boardimage}{Board}{}
\begin{board}
\end{board}
\end{boardimage}

We will make another board image for our OOB, since
that component should hold counters in VASSAL. We
pass the optional argument oob in this case.
\begin{boardimage} [oob]{00B}{}%

\fulloob
\end{boardimage}

We have two charts that we would also like to be put
in: The CRT and the TEC. These must be put into
TikZ/PGF pictures, and we precede those with the
macro \info. This macro takes three arguments: The
name of the next image, the category, and sub-category.
Again, the name is more or less free form, and the cat-
egory in some sense dictates how it will present in the
VASSAL module. For charts we should use the category
chart. The sub-category isn’t really used at this point.

\info{CRT}{chart}{}
\begin{tikzpicture}
\node{\crt};

\end{tikzpicture}

%
\info{TEC}{chart}{}
\begin{tikzpicture}

\node{\tec};

\end{tikzpicture}

We also want background images for our pools of elimi-
nated units in VASSAL. This will be enlarged version of
main headquarter unit of each faction, overlayed with a
white semi-transparent background.

(© 2022, Christian Holm Christensen, licensed under the CC-BY-SA 4.0



20

\info{A}{pool}{}
\begin{tikzpicture}[scale=7]
\chit[a hql;
\fill [white,opacity=.5] (-.6,-.6)rectangle++(1.2,1.2);
\end{tikzpicture}
\info{B}{pool}{}
\begin{tikzpicture}[scale=7]
\chit[b hql;
\fill[white,opacity=.5](-.6,-.6)rectangle++(1.2,1.2);
\end{tikzpicture}

We can add splash page image. We have not defined
such an image in the game package, but we could have,
so we will make it here. Again, it should be a TikZ/PGF

picture. For this, we need to use the category front.

\info{Splash}{front}{}
\begin{tikzpicture}
\node[board frame,title,
minimum width=5cm,minimum height=5cm]
{A Game};
\end{tikzpicture}

We could continue to add more if we wanted to. Basi-
cally anything can be added. For example, one might
want custom button icons or the like. We will add a
few such icons here, mainly to show how the patch.py
script works.

The wgexport.cls class provides a number of icons we
may use for this. These are

~ T TT"

We will add these as pictures to our export PDF. First,
the image for the pool of units.

\info{pool-icon}{icon}{}

\begin{tikzpicture}[transform shape,scale=.4]
\pic{pool icon};

\end{tikzpicture}

The category icon has no special meaning.

We also want to add a custom icon for the OOB button.
VASSAL has a button icon for the piece inventory which
is really quite appropriate, but alas it is already in use,
so we will make our own. Here, we use the TikZ/PGF
picture oob icon provided by wgexport. This picture
needs two arguments: the left hand and right hand sides
fill colours. We will use our background colours.

\info{oob-icon}{icon}{}

\begin{tikzpicture} [transform shape,scale=.4]
\pic{oob icon={a-bg}{b-bg}};

\end{tikzpicture}

Normally the wgexport.py script uses the undo image
for the flip button. However, that may be a bit confus-
ing, so we will use a custom image for that. We will use
the pictures provided by wgexport.

9. VASSAL module

\info{flip-icon}{icon}{}

\begin{tikzpicture} [transform shape,scale=.4]
\pic{flip icon};

\end{tikzpicture}

%

\info{eliminate-icon}{icon}{}

\begin{tikzpicture}[transform shape,scale=.4]
\pic{eliminate icon};

\end{tikzpicture}

%

\info{restore-icon}{icon}{}

\begin{tikzpicture} [transform shape,scale=.4]
\pic{restore icon};

\end{tikzpicture}

\end{imagelist}

\end{document}

9.2 Make the draft module

We run KTEX on the above export.tex file (the
source of this section) to generate export.pdf and

export. json. We then process these with the wgexport . py
Python script to get the draft VASSAL module Draft . vmod.

‘kpsewhich wgexport.py‘ export.pdf export.json

The utility kpsewhich'®TEXLive and similar TEX dis-
tributions. will report the location of a file in the TEX
installation tree(s). Note that the ¢ above are what is
typically called ‘back-ticks’ (i.e., what you typically put
as the leading character of scare-crows in I¥TEX). This
is of course Un*x-like syntax. For other OSs, consult
your TEX distribution’s documentation for how to find
files in the TEX installation.

You can open the module in the VASSAL editor and see
what was generated. On the board, all areas marked
with the zone scope (or zone path) should be defined
as zones. In the OOB, we should have two zones, one for
the A faction and one for the B faction. We should also
have three groups of counters — one for each faction and
one for “Markers”. Finally, we should have a window
with tabs, one for each defined chart.

We can add the rules to the module. So suppose the
rules are in game.pdf, then we can do

‘kpsewhich wgexport.py‘ export.pdf export.json \
-r game.pdf -o Game.vmod

to add the rules to the “Help” menu. Other informa-
tion is added to that menu too, such as key-bindings
and a short note on how the module was generated. Of
course, you should also see the splash image that we de-
fined. The option -o (filename) writes the module to
(filename) rather than the default Draft.vmod.

(© 2022, Christian Holm Christensen, licensed under the CC-BY-SA 4.0



The wargame tutorial

We define the version of the module by passing the op-
tion -v (version) to the Python script. By default, the
version is set to draft, and a note on the draft is added
to the module and the grids are drawn. Any other ver-
sion string will suppress these.

Also, the default module name is Draft and a similar
description is likewise the default. We can change this
by passing the options -t (title) and -d (description).
Note, you may want to quote the arguments if they con-
tain spaces or the like. Thus, to make a more complete
module, we would do something like

‘kpsewhich wgexport.py‘ export.pdf export.json \
-r game.pdf -o Game.vmod \
-t "LaTeX Wargame tutorial" \
-d "Example of using wargame to make a module" \
-v 0.1

Note that you typically need to quote (") longer strings
that contain spaces and other special characters.

9.3 Going the extra mile

We will take one more step on the VASSAL module,
and then we will get back to the Print’'n’Play version
of the game. We can provide the wgexport.py script
with an additional Python script that can tweak the
VASSAL module any way we like. We can for example
move counters into their starting positions, to the OOB,
adjust grids, add more materials, and so on. It is only
your imagination, and Python programming skills, that
sets the limits on what you can do.

Here we will make a simple patch.py Python script
which does very little. The wargame package, wgex-
port class, and wgexport.py script has already done the
heavy work for us. Not least be because we have taken
care to add in zone styles where needed.

We will put all the counters on the OOB chart, and
adjust some grids - most notably the OOB and turn
track grids. Other than that, we will not do much.

‘kpsewhich wgexport.py‘ export.pdf export.json \
-r game.pdf -o Game.vmod
-t "LaTeX Wargame tutorial" \
-d "Example of using wargame to make a module" \
-v 0.1 -p patch.py

Now for the script:

# --- We may need to import the export module ---
#
# from wgexport import *

def patch(build,data,vmod,verbose=False,**kwargs) :
# --- Get the game ---

21

game = build.getGame()

# --- Get the maps ---
maps = game.getMaps()
# —-—-- Get the main board ---

board = maps[’Board’]

# -—- Get the mass keys ---
mkeys = board.getMassKeys()
mkeys[’Eliminate’] [’icon’]

mkeys [’Flip’] [’icon’] =

’eliminiate-icon.png’
’flip-icon.png’

# --- Get the dead-pool map ---
pool = maps[’DeadMap’]
pool[’icon’] = ’pool-icon.png’

pool.getMassKeys () [’Restore’] [’icon’] = ’restore-icon.png

# —-—— Get the 00B map --—-
oob = game.getChartWindows() [’00Bs’]
oob[’icon’] = ’oob-icon.png’

# EOF

In the patch.py script we can use all the functionality
provided by wgexport.py. Elements are XML elements
that we apply xml.dom.minidom operations on.

Note, if we need to use classes, etc. from wgexport.py,
then we ought to import that module into our patch
script, as shown in the top comment above. In the ex-
ample patch script we do not need that, so we leave it
out.

One can do quite complicated things in VASSAL, which
can be set-up in the patch script. By default, the
wgexport script sets up the pieces and boards, and if
one has defined regions with specific piece names, then
the script will likewise place the pieces there (as with
our game turn example above).

One can, for example, setup the module so that the
game turn marker automatically flips or progresses when
the turn track widget reach specific points. One can in
principle also set it up so that when a specific turn or
phase is reach, then pieces are moved from the OOB to
the board. The more one can do like that, the more the
game is automated.

10 The materials

Next, we will make some materials for printing. The
next few pages will contain only the materials and no
text, so we will summarise what we do here.

The first thing we put out is the map. That is pretty

(© 2022, Christian Holm Christensen, licensed under the CC-BY-SA 4.0



22

simple. We do

\begin{board}
\end{board}

Then comes the OOB. We simply use the \fulloob
macro.

After that are the two tables put into one page.

\crt \tec

And the final part are the counter sheets. We will take
advantage of the macros \alla and \allb yet again.

\doublechits{\allb}{4}{1.24}

As a final bonus, we also make a board that includes
our three charts: The OOB, CRT, and TEC. We will
not demonstrate the code here, but take a look in the
sources if you are curious.

We put in \cleardoublepage between all this so that
we can print directly on a duplex printer.

11 Epilogue

I hope that this short tutorial has helped you. Sugges-
tions, corrections, and so on are very welcomed.

Christian

(© 2022, Christian Holm Christensen, licensed under the CC-BY-SA 4.0

11. Epilogue



The wargame tutorial

wargame

(© 2022, Christian Holm Christensen, licensed under the CC-BY-SA 4.0

23



24

(© 2022, Christian Holm Christensen, licensed under the CC-BY-SA 4.0

11. Epilogue



The wargame tutorial

4
E
6

(© 2022, Christian Holm Christensen, licensed under the CC-BY-SA 4.0

25



26

(© 2022, Christian Holm Christensen, licensed under the CC-BY-SA 4.0

11. Epilogue



The wargame tutorial

Die
roll

1:3

1:2

Odds

1:1

2:1

3:1

4:1

Ol O = W N

AE
AE
AR
AR
EX
EX

AR
AR
EX
EX
EX
DR

AR
EX
EX
EX
DR
DR

EX
EX
DR
DR
DR
DE

DR
DR
DR
DR
DE
DE

DR
DR
DE
DE
DE
DE

Terrain MF CFf
<:> Clear 1 —
Woods 2 x2"
&

Y Mountains | Stop  x2°
@ Coastal 2 X2

T Defender modifier
* XIE only, unless =]

(© 2022, Christian Holm Christensen, licensed under the CC-BY-SA 4.0

27



28

(© 2022, Christian Holm Christensen, licensed under the CC-BY-SA 4.0

11. Epilogue



The wargame tutorial

(© 2022, Christian Holm Christensen, licensed under the CC-BY-SA 4.0

29



30

11. Epilogue

(© 2022, Christian Holm Christensen, licensed under thq



31

The wargame tutorial

-

4-4

Cc2

=]

4-4

A2
(=]
=)

[e]

235

Al
-

(© 2022, Christian Holm Christensen, licensed under the=SA 4.0



11. Epilogue

32

<

*SA 4

(© 2022, Christian Holm Christensen, licensed under th



0% VS-Ad-DD 92U} I9puUn posuodl] ‘Uasuo)siLIy) WOy Uensuy)) ‘zz0g ©

T
(3p]
T
(sp]
i

-0 4a @ dad 9d 9d XA

Aq 4d 9a ¥d XA XA

4d ¥a ¥d Xd Xd ¥V

Ad ¥a ¥d XA X UV

-0 Ma 4 Xd XA UV AV
9 MA M XA UV UV AV | 1
T¥ T:¢ Te TT &1 €T | [od N
SPPO o1

611
§
61
611
¥
16T
Ell
611
N~

-
'y

[\ BRI S S Tl Yool
|

T
i
i

©

Qﬁ
N

Oﬂ
2

-
'y

G [e] Sso[un ‘fjuo =< .
TOYIPOUL Lopuafo(] | m
oX C [eIseo))

T
~
T
~
T
o

dojg | surejyunopy

A |
474
~ 121
°ﬁ
Tic
cﬂ
Tel
<
*
[a\]
X

—
[=]

X 4 SPOOA

— T Ied[)

2]
S
el
L
.

7
i
DO@@

I dN Ureraay,

syey)

i
+
T
i
T
(91}
T
(o}

)
[=]
£
[=]

VS
/E]
g
.14
€1l
[43
€1l
TET
co

1
o
T
o
hi
<
1
o
yi
o
[Ty)
gl
(o]
T
—
—
+

@
[=]
<
o
<
o
<
[=]
o
[=]

i
1]
N
50
a
@

(=)

T
o
T
o
T
=
T
i
hi
<
o
(o]
T
o
b
o

i
1
H
il
{l

.a 4 A¢]

~
w
]
<
—
<
]
[®)
]
<

0T

T
o
ﬂl')
N
T
o
T
o
|-I|
o
hi
<
b
<

1els -0
w

T
K
i
{0
il
0
i
K

<
o~
<
2]
Q
I
o

El

o8eyoed

Yy} ul jeuoInN} y mEmu <

s
S
cu
S
S
O
<

ajnieg jo




	1 Introduction
	2 The game
	3 The game package
	4 The units
	4.1 Faction styles
	4.2 Unit templates
	4.3 Specialisations
	4.4 The actual units
	4.4.1 Side A
	4.4.2 Side B

	4.5 The flipped side of things
	4.6 Other counters

	5 The board
	5.1 Adding units to the board
	5.2 Clipped boards

	6 The charts
	6.1 The CRT
	6.2 The TEC
	6.3 The OOB

	7 Ending the package
	8 Rules
	9 VASSAL module
	9.1 The export.tex file
	9.2 Make the draft module
	9.3 Going the extra mile

	10 The materials
	11 Epilogue

