P4
(PPOWER4)

PDF PRESENTATION POST PROCESSOR
Presentations with IXTEX and Acrobat Reader

Klaus Guntermann
Darmstadt University of Technology
Department of Computer Science
Systems Programming Group
(English version of report TI-14/99)

September 1999

Contents
1 Overview

2 Requirements and area of application
2.1 PowerPointetc. o
22 xdvi ...
2.3 Acrobat Reader
2.3.1 Displaying properties
232 Creatingpdf files. L oL

3 Objectives of PPower4
3.1 Implementation using only the text formatter
3.2 Postprocessing Lo
3.3 Implementation Lo o

4 Extensions
4.1 Fadinginandout.
4.2 Animations L
4.3 Backgrounds L

5 User manual
5.1 Installation of the post processor
5.2 Using PPower4 for a document
5.3 Calling the post processor
54 Examples

6 Summary

1 Overview

More and more lecture halls are equipped with beamers. When preparing a
lecture one can get rid of real slides to be presented with an overhead projector.
But one has to determine, how one can prepare the contents for the presentation
and which software can be choosen for displaying.

This report describes a tool, which helps to prepare contents with a large
amount of mathematical formulas in an accustomed way and in good quality.
First we show, why one cannot get the job done with the available tools. Then
we explain, what areas still need compromises.

2 Requirements and area of application

For presentation with a beamer (what includes lecture presentations) the fol-
lowing software can be used:

e dedicated presentation programs like PowerPoint! [Koh94] (for Windows)
or MagicPoint (for Linux/Unix),

e the preview program xdvi, which is used for proofreading of output from
the typesetting program TEX [Knu86] under Unix, and

o Acrobat Reader for pdf [Ado99] files.

If a presentation is supposed to not only show colorful pictures and text,
but needs a seamless integration of formulas, one does not have much choice.
If there are only a very small number of formulas in a text, one may be able
to include them as special graphics. But in a mathematically oriented text this
strategy will be much too complicated.

The programs under consideration have the following properties:

2.1 PowerPoint etc.

MagicPoint is free software for Unix. The input is prepared with any text editor,
but does not allow descriptions of a formula. But graphics can be included easily.
It is rather straight forward to prepare an itemized list with various levels. The
presentation can be stopped in the middle of a page and can be resumed after an
interaction. Colorful backgrounds can be designed and included. Furthermore
simple animated texts are one of the features.

PowerPoint is well known as a commercial software product to be used on a
PC with the Windows operating systems. It is in widespread use. But it does
support inclusion of formulas only by preparing a graphics replacement. The
presentations are prepared within the system. Thus portability to other systems
is a problem. A wide range of special effects can be selected from menus. It
is easy to create backgrounds, prepare animations, to fade in and out parts of
the text dynamically or to highlight parts depending on the current state of the
presentation.

Nevertheless scientific texts require an easy and well known description of
formulas. Both MagicPoint and PowerPoint cannot help with that. This makes

ltrademarks are not marked in this text. This should not be taken as an indication, that
all used names are free of rights of their trademark holders.

using them uncomfortable, although they can support the development of a
presentation with dynamic effects visually and offer a wide range of extras.

2.2 xdvi

The program xdvi has been developed as a tool for proofreading. The fea-
tures for presentations are rather limited. For example it is not possible to go
through a page uncovering it step by step. Even a full screen mode can only be
simulated by explicit configuration of the program and the window manager.
Using rastered fonts the adaption to different screen resolutions can not be com-
pletely exact. If one has to use an unknown machine for a presentation during
a conference, it has to be expected that the display cannot be scaled properly.
Furthermore included (PostScript) graphics are rendered in the background by
an external program and this may lead to delays when a page is advanced. The
impression of an instantaneous switch of pages can only be expected with very
fast machines and only without included graphics. Because a document will
refer to external fonts and grahics files one has to supply a number of files for a
presentation and make sure that all of them are available.

2.3 Acrobat Reader

The displaying program Acrobat Reader is available free of charge for many
platforms. Unfortunately there is no source available. If a problem is discovered
one has to wait for an update from the supplier. To prepare a document for
displaying with Acrobat Reader one does not need to use the licensed program
Distiller, which is not free. In the meantime a selection of free programs has
evolved, which can create documents in the pdf format to be displayed by
Acrobat Reader.

2.3.1 Displaying properties

Doing a presentation with Acrobat Reader one cannot dynamically uncover a
text. Only moves between pages and hyperlinks are supported. The program
supports full screen display and adapts to different screen sizes automatically,
scaling fonts to the proper size. Advancing a page in full screen mode can be
instantaneously. But other page replacement strategies are also possible, e.g.
dissolving or striping. With “hot spots” one can navigate within a document,
including dynamic back links, if several pages link to the same destination, which
will bring you back to the page visited before. Each document is selfcontained,
i.e. it includes any additional fonts and graphics. For a presentation one needs
to supply only one file.

2.3.2 Creating pdf files

Any user who needs a large number of formulas and wants to process these
on several different computing platforms will find that TEX and BTEX [Lam95]
are the best choice. Because TEX outputs a device independent format (dvi),
one can convert this dvi output to pdf. Another option is to convert dvi to
PostScript first and finally process this with the (commercial) Distiller. But
there is another shorter way.

Newer versions of the TEX distribution teTeX for Unix (and other distribu-
tions as well) include pdftex, a variant of TEX which creates a pdf file directly
for immediate presentation. A drawback is, that graphic inclusion works only
for files in JPEG [Wal91], MetaPost [Hob92] or pdf format. But all graphics pre-
pared with xfig [SS] can be easily converted to MetaPost with an appropriate
backend. If a presentation is newly created and does not require to include a
large number of PostScript graphics, this is the easiest way. And on this path
the post processor PPower4 can be used.

3 Objectives of PPower4

The text formatter is designed to create printed documents. But the printed
output is static and only of limited use for a live presentation. One missing
feature is to be able to uncover a page step by step. It may be better in some
cases, when a reader can read ahead and catch the overall view in advance. But
on the other hand one may have an unexpected or surprising development. If
this is within the range of the current slide, the remarkable item should neither
go on the next slide nor be visible from the beginning.

Doing a presentation with Acrobat Reader one can give the effect of dynam-
ically building a page, because pages are updated instantaneously. If one wishes
to uncover a page in several steps, one can make a sequence of pages and add
some more text on each of them. The only item to keep in mind that one has
to avoid updating the page or slide number between the intermediate pages, if
one has numbers for general orientation or reference.

3.1 Implementation using only the text formatter

A first solution for this task can be prepared using only the features of the text
formatter. If there is enough material on a page to be displayed one can fill
the current slide with (white) space and show it. Furthermore the contents of
this page omitting the trailing space are carried over to the next slide without
incrementing the counter.

As easy as this description is also an implementation of this strategy. The
preparation of the intermediate page can be triggered independently of the cur-
rent output routine. Of course one has to mark the action within the text. The
macro for this is named \pause. The implementation can be seen in figure 1.

Within lists this macro can be inserted easily, as the following example shows.

\begin{enumerate}

\item this describes the first case,\pause
\item this the second one,\pause

\item and this the last.

\end{enumerate}

The result is shown as three minipages, which should give the impression of a
page built dynamically, if the switching of pages is not noticeable.

YA
%o
YA
YA
%o
YA
%o
%o
YA
YA
P
YA
YA
%o
YA
YA
%o
YA
YA
%o
YA
%o
Wi
YA
%o
W
YA
%o
\i
\1
\f
\n
\n
\n
\d

Yh

texpause.sty 25 May 99
This is a quick hack to enable repeated pages with incremental
contents e.g. for displaying slides uncovering step by step.

It depends on pdftex to be activated, i.e. for normal (La)TeX we
would ignore the command.

The initial version (numbered 1.0) was written 07 May 99.
Version 1.1 was created 25 May 99 and fixed a naming problem.

Possible extensions: make the page numbering optional (maybe using
subnumbering)
Make action optional (for printed versions via pdf).

Plan of attack (should work with TeX and LaTeX):

- Get some ressources, i.e. one counter, one token register and one
box.

- When activated save the current page count in the counter and the
output routine in the token register.

- Setup a new output routine, which saves away a copy of the
current page.

- Trigger this output routine to save the cumulated page contents.

- Restore the former output routine and run it with the restored
saved contents.

- Reset the page count and reinsert the contents once again,
removing the last glue item on the page.

fx\pdfoutput\undefined

et\pause=\relax\expandafter\endinput

i

ewbox\p@uses@vebox

ewtoks\p@uses@veoutput

ewcount\pQuses@vepage

ef\pause{\global\p@uses@vepage=\countO\relax %save pagenumber

\p@uses@veoutput=\output % make backup copy of output routine

\output={\global\setbox\pQuses@vebox=\box255}% copy current contents
% only, when triggered

\vfill\eject %trigger now

\output=\pQuses@veoutput % restore output routine

\unvcopy\p@uses@vebox % insert contents

\eject % now really show the output

\global\count0=\pQuses@vepage\relax jrestore page number

\unvbox\p@uses@vebox\vskip-\lastskip % and insert again for next turn

Figure 1: Implementation of incremental page builds using only TEX

1. this describes 1. this describes 1. this describes

the first case, the first case, the first case,
2. this the second 2. this the second
one, one,

3. and this the last.

But this strategy has some drawbacks:

1. As soon as itemized lists fill a page completely, TEX will try to shrink
the space between the items, when the bottom is reached, to improve the
overall page. But this will lead to slight moves of the first items, when the
last is added. However this annoying effect can be overcome by removing
the shrinkability between the items.

2. It is impossible to interrupt within a line. Because the slide is filled ver-
tically, the current line will be terminated. Space is limited on a slide
due to the fact that one has to use large fonts for better readability given
the limited resolution of beamer displays (currently XGA is an affordable
maximum, that is 1024 x 768 pixels). And one can not always overcome
the problem by starting a new line. Furthermore the final layout will be
less readable with more short lines in different lengths.

3. One cannot step through an aligned multiline formula display line by line.

4. There are more structured text elements, which cannot be interrupted and
resumed with this strategy.

After all this strategy is only helpful for a very limited amount of interaction.
But it has the advantage that it can be used independently, that it can cooperate
with many macro packages of the text formatter, that it does not need any post
processing, and that it is not limited to pdf.

3.2 Post processing

Interrupting the displayed page at any place can only be achieved by post pro-
cessing the output of TEX. If TEX creates device independent output, such a
step is needed anyway for preparing the pages for the intended output device.
The dvi format includes additional commands (“\special”) for communica-
tion between the formatter and the device driver. Creating pdf directly from
TEX this step is omitted. There is no dvi file. And pdf does not have “spe-
cial” commands. But pdf allows to insert comments into a document, which
are normally ignored by the processing programs. These comments can be used
to transport commands to the post processor, which has to split each stepwise
developing page into a sequence of pages.

For the approach to postprocess the files there are the following requirements:

1. It should be avoided to have to run the post processor each time during
development of a presentation, just to see where the steps are in a page.

2. Any bottom material (including page numbers etc.) should already be
visible on the first partial page, not only when everything is shown (this

makes a difference compared to covering parts of a slide with a piece of
paper on an overhead). The use of footnotes on slides should be avoided
because of the reduced resolution and the lack of space.

3. Hyperlinks to a page should go to the complete page.

4. “hot spots” should be active already on partial pages.

These requirements are fulfilled as follows:

1. The text formatter can insert a small mark to visualize the point of in-
terruption, which will not influence the layout of the page. This mark
can be removed by the post processor and allows to judge the flow of the
presentation without post processing.

2. The formatter must write the bottom matters together with the top mat-
ters before the body of a slide is written. While this is possible it requires
modifications of the output routine of the macro package in use. One
would wish that this sequence of creating the page output would become
default or at least an option of the macro packages.

3. During post processing the complete pages must keep their places in the
document or all references to them must be updated. Given the structure
of a pdf document this can be achieved by keeping the sequence of pages
and inserting the new intermediate pages.

4. Activating the “hot spots” already on partial pages can be done by copying
all hot spot info from the complete page. But some care is required, if the
hot spots are marked with frames. These would also show up on the partial
pages. But frames for the hot spots are less helpful in a presentation,
which is usually given by the author or one of the authors. In contrast
to a new reader of a document the author does not need the highlighting
of hot spots in a page. On the contrary. The highlighting may distract
the audience from the really important parts of a page. Therefore it may
be helpful to have hot spots not marked with frames and even leave them
unmarked. The presenter will have a chance to know where a hot spot is
during the presentation because Acrobat Reader changes the appearance
of the mouse pointer, when it is over a hot spot. This can help to locate
even unmarked hot spots.

3.3 Implementation

To process the pdf format we need a program, which can read, modify and
write that format. Since 1999 there are some libraries available for this task.
But some of them cover only parts of the requirements (e.g. can only read to
display or can only write to convert to pdf) or they are not available as open
source. One exception is a library written by Etymon Systems, Inc. [Nas98].
This library has been used to prepare a first prototype of PPower4. Using Java
as the implementation language gives the additional advantage that the result-
ing program can be used on a wide range of platforms without requiring any
implementation or porting effort. Because the post processing will not be needed
that often during the development of a presentation any doubts concerning the

throughput of this solution because of interpretation by a virtual machine will
have only minor impact.

Using TEX the marker \pause inserts a small colored block (with zero width
and height for the formatter) into the document. In the pdf file this block
is surrounded by two comments, which will lead to a page split removing the
block. Processing the document without creating pdf the command will have
no effect.

It is not reasonable to include the whole program of the post processor here.
Instead the following description should suffice:

e The post processor consists of

— a control part, which parses the command line arguments and acti-
vates the other parts.

— the file processor, which scans the input file page by page, looking
for the comments to process. It has methods to modify the page
contents and to create new pages.

— the specific comment processors, which implement the associated ac-
tions.

e Any operations with the pdf file are kept in the file processor. If another
library for pdf processing becomes available all other parts of the system
should be unaffected.

e It is easy to add further comment processing to the system. Examples are
discussed below.

e The system (not including the library to parse and create pdf) has about
1000 lines of Java code.

The required style files, libraries, and the program can be found at

http://www-sp.iti.informatik.tu-darmstadt.de/software/ppower4/

4 Extensions

A full blown presentation needs a lot more functionality, which is not completely
implementable with the given environment.

4.1 Fading in and out

It may be helpful to fade in or out complete passages on a slide. But currently
there is no user interface for such actions defined. Creating a document tex-
tually with a text editor and IATEX one might use minipages as the entity of
manipulation. This approach would be rather expensive because pdftex places
the items on a page using relative distances. This makes the sequence of items
on a page fixed and one would have to keep track of all positions by complete
analysis of the contents of a page.

4.2 Animations

Animated effects are currently not supported by Acrobat Reader. It would be
necessary to supply them by external programs which can be called. I have not
investigated, whether the JavaScript in Acrobat Reader can help in preparing
a solution for this.

4.3 Backgrounds

The overall effect from a presentation can be enhanced by using color. This is
in contrast to printed material, which is normally created by TEX. First the
definition of a colored background can help. When this was initially taken into
consideration for PPower4, background coloring was not supported for pdftex.
But there has been a suggestion for an implementation of monochrome back-
grounds in the Internet discussion list for pdftex. This can be done without
post processing. But also for PPower4 the task is easily done.

But delegating the background insertion to a post processor may lead to
unreadable documents before application of the post processor, if the foreground
color of the text is indistinguishable from the default background.

5 User manual

This section will discuss installation and use of the post processor.

5.1 Installation of the post processor

To run the post processor the following items are needed: the Java libraries pj
(tested with version 0.22) and gnu.getopt. Both are protected by the GNU
general public license and can be obtained and used without charge.

These libraries can be combined with the implementation of PPowerd (if
neither of them is required for other projects) in one Java archive file. Running
the program under Unix the following short script may be helpful, which sets
the environment for calling PPower4. The script can be as follows:

#!/bin/sh
CLASSPATH=/common/Java/lib/ppowerd/pp4.jar \
java de.tu_darmstadt.de.sp.pp4.PPower4 "$a@"

5.2 Using PPower4 for a document

To use the macro \pause the definition file pause.sty must be processed. It
has to be placed in an area which is searched by ETEX. To use the background
processing additional definitions from background.sty are required.

The following background selections are available:

\pagecolor{color} Monochrome background in the selected color.

\hpagecolor[colori]l{color2} Background color changing horizontally from
colorl to color2 or, if the optional argument is missing, background
color fading to brighter variant starting with color2.

\vpagecolor[colori]{color2} Color of background changing vertically from
colorl to color2 or, if the optional argument is missing, background
fading to brighter variant starting with color?2.

The selected colors must have been defined for ETEX. One can refer to the
colors predefined by color.sty or add new colors with \definecolor. For
changing colors both color definitions must be in the same color model (rgh or
cmyk). Simple gray scale values are not supported.

If there is a background definition for a page to be split into partial pages,
the background must be defined before the first \pause is triggered. Otherwise
the selection will be ignored for this page. Backgrounds are kept for subsequent
pages until redefined.

5.3 Calling the post processor

After processing the file with pdftex/pdflatex the post processor must be
called. It requires at least the names of an input file and an output file. Further-
more the processing can be controlled selecting some of the following options:

-v increase verbosity for messages (can be used repeatedly). This is mostly
usable for debugging new post processing schemes.

--verbose=n set verbosity level to n

-n do not compress the output file (useful for test or demonstration purposes)
--nocompress like -n

-h display a (helpful) usage message

--help like -h

-7 like -h

5.4 Examples

A first very small example using the class foils shows how to build a page
inrementally with a multiline formula. To save some space we restrict ourselves
to a small number of steps.

\documentclass[30pt,landscapel {foils}
\usepackage [pdftex] {geometry}
\geometry{headsep=3ex,hscale=0.9}
\usepackage [pdftex]{color} % for the colored block
\usepackage{pause}
\rightfooter{} % no more page numbers bottom right
\MyLogo{} % no logo bottom left
\begin{document}
\foilhead{An incrementally built formula page}
AL
Q(n) = \sum_{i=1}"{n}i~{2} =
\frac{1}{3}n(n+\frac{1}{2}) (n+1) \pause
\]

10

© 0 N S Otk W N

An incrementally built formula page An incrementally built formula page

mngﬁ:%m+§m+m mngﬁ:§m+§m+n

1,
n

3

Lo 1o, 1 1]t
=N -n -n =N -n
37720 T 2 6

IA

+ + 1

IN

1 . 1 1, .
g\n'j\ + §\n'5| + é\n‘i\

= |

An incrementally built formula page An incrementally built formula page

mngﬁ:%m+§m+n mngﬁ:%m+§m+n

1,
—n?

3

Lo Lo LI 1, N
=N -n -n -n -=n
37720 e 6

2

<

Lo 1o 1
=N -n -n
37720 e

+

+

1 . 1 . 1, .
< 3\11'5\+§\n‘5|+6\n‘5\

= |nd

Figure 2: Intermediate file and final result of first example

\begin{eqnarrayx*}

\left|\frac{1}{3In"3+\frac{1H{2In " {2}+\frac{1}{6}n\right|

&\leg&\left|\frac{1}{3}In"3\right |+\left|\frac{1}{2}n"{2}\right|
+\left|\frac{1}{6}In\right|\pause\\

&\leq&\frac{1}{3} In~ {3} +\frac{1}{2} In"{3} |+\frac{1}{6} In~{3}I\\

&=&|n~{3}|

\end{eqnarray*}

\end{document}

Running pdflatex on this file will create a document with only one page. Us-
ing the post processor this will be extended to three pages. The intermediate
document with the marking blocks and the final result are shown scaled down
in figure 2.

In the following extended example the details can be examined in more
depth.

\documentclass[30pt,landscape] {foils}
\usepackage [english,german] {babel} ¥ language support
\usepackage [pdftex]{color}
\usepackage [pdftex] {geometry}
\geometry{headsep=3ex,hscale=0.9}
\usepackage{hyperref}
\hypersetup{pdftitle={PPower4Example},
pdfsubject={An example to demonstrate PPower4},
pdfauthor={Klaus Guntermann, Systems Programming Group,

11

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

Darmstadt University of Technology,
<guntermann@iti.informatik.tu-darmstadt.de>},
pdfkeywords={pdftex, acrobat},
pdfpagemode={FullScreen}
}
\usepackage{pause}
\usepackage{background}
\usepackage{pdfslide}
\begin{document}
\definecolor{bgblue}{rgb}{0.04,0.39,0.53}
\vpagecolor{bgblue}

\foilhead{An example with colored background}
\begin{itemize}
\item Itemizations\pause
\begin{itemize}
\item are nested\pause
\item and labelled
\hypertarget{start}{} %mark any place on the page
\begin{itemize}
\item even nested deeply\pause
\end{itemize}
\item on different levels\pause
\end{itemize}
\item with formulas like $\sum_{i=0}"\infty a_i\cdot x"i$

\end{itemize}

\foilhead{Different page transitions}
\hypersetup{pdfpagetransition=Dissolve}
\begin{itemize}

\item Switch it on for a page\pause
\item But must switch off explicitely
\end{itemize}

\foilhead[2ex]{That’s it}
\hypersetup{pdfpagetransition=R}
\begin{center}

Just a small example.

You may go \hyperlink{start}{back} to start.
\end{center}
\end{document}

This document uses rather large font sizes and an orientation suitable for pre-
sentation with a beamer. This configuration is made through the geometry
package (lines 4 and 5). To color the pages we need the package color (lines 3
and 19). Additional information and navigational support is provided through
the hyperref package (lines 6, 7, 28, 39, 46, and 50). Specifically for PPower4
we need pause and background (lines 15 and 16). Finally pdfslide will config-

12

ure other packages and set up defaults (line 17). Thus it should be loaded last.
Actually this package removes all bottom material from the foils page layout

© 00 O Ut i W N

R R R W W W W W W W W W N NN DNNDNDNDNNDN e e e e
W N H O © OO Uik Wh PO OO TO Ui WNhHFE O WWOOWwNO Ut WO

and sets default colors for the different parts. The details are as follows:

%% pdfslide.sty 30 Aug 99

%/ Adapt foiltex to be used to prepare slides in pdf format
%% using backgrounds and partial builds.

%% Disable some pdf commands, when not used in pdf(la)tex.

%% Special (PDF) effects:

%% - make background blue, write normally in white and

%% headings in yellow.

%% - use colorful labels in itemized lists.

%% - avoid footline usage, because that would interfere with
%% partial builds of a page. Move the page number to the
%% upper right corner. This means also suppression of Logo
W etc.

%% — make sure that links are displayed in text color, not
%% with frames.

%% - Do not use paragraph indentation and justified text on
%% slides (shouldn’t that be the default?)

\rightfooter{} % no more page numbers bottom right

\MyLogo{} % no logo bottom left
\rightheader{\rlap{\quad\textsf{\tiny\thepagel}}} % page number
\parindent Opt % do not indent paragraphs

\rightskip Opt plus 1fil % allow ragged right

%% select colors

\RequirePackage{color}

%% for the frames/page numbers etc.
\renewcommand\Black{\color{white}}

%% for the headline etc.
\renewcommand\normalcolor{\color{yellowl}}

%% for the background

\pagecolor{blue}

%% for the text

\color{white}

%% choose some colored item labels
\renewcommand{\labelitemi}{\textcolor{red}{\bullet}}
\renewcommand{\labelitemii}{\textcolor{yellow}{\star}}
\renewcommand{\labelitemiii}{\textcolor{magenta}{\ast}}
\renewcommand{\labelitemiv}{\textcolor{cyan}{\circ}}

% Make hyperlinks colored, not framed, if hypersetup is used
\ifx\hypersetup\undefined\relax\else
\hypersetup{colorlinks=true}

\fi

In the body of the document the contents of the slides are written down.

In all places, where the page build should stop, the command \pause must be
inserted (lines 24, 26, 30, 32, and 41 of the example file).

13

The final result is shown in figure 3. All slides showing the partial builds
are scaled down.

6 Summary

The implemented processor helps to present also scientific material with a large
amount of formulas in a decent form. Further development can add function-
ality to increase dynamic aspects of a presentation. But careful selection is

advised,

not to distract the audience from the contents of the presentation by

overwhelming them with fancy effects.

References

[Ado99]

[Hob92]

[Knu86]

[Koh94]

[Lam95]

[Nas98|

Adobe Systems Incorporated. Portable Document Format Reference
Manual. Addison-Wesley, Reading, MA, USA, version 1.3 (march 11,
1999) edition, 1999.

J. D. Hobby. A user’s manual for MetaPost. Technical Report 162,
AT&T Bell Laboratories, 1992.

Donald E. Knuth. The TgXbook, volume A of Computers and Typeset-
ting. Addison-Wesley, Reading, MA, USA, 1986.

Eva Kohlberg. Microsoft powerpoint fir Windows. Microsoft Press
Deutschland, Unterschleissheim, 1994.

Leslie Lamport. Das BETEX Handbuch. Addison-Wesley, Reading, MA,
USA, 1995.

Nassib Nassar. Automating pdf objects for interactive publishing. Web
Techniques Magazine, 3(10), October 1998.

Brian W. Smith et al. Supoj Sutanthavibul. Xfig user manual. online
at http://www.xfig.org.

Gregory Wallace. The JPEG still picture compression standard.
Comm. ACM, 34(4):30-44, 1991.

14

An example with colored background

An example with colored background

Itemizations Itemizations

* are nested

An example with colored background An example with colored background

Itemizations Itemizations

* are nested
» and labelled

even nested deeply
* on different levels

* are nested
* and labelled
even nested deeply

An example with colored bac Different page transitions

Itemizations Switch it on for a page

« are nested
* and labelled

even nested deeply
= on different levels

. : o0
with formulas like 7%

Different page transitions That’s it

Switch it on for a page Just a small example.

But must switch off explicitely You may go to start.

Figure 3: The complete example 2

15

